@inproceedings{zhang-chen-2025-ppt,
title = "{PPT}: A Minor Language News Recommendation Model via Cross-Lingual Preference Pattern Transfer",
author = "Zhang, Yiyang and
Chen, Nan",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.526/",
doi = "10.18653/v1/2025.acl-long.526",
pages = "10728--10745",
ISBN = "979-8-89176-251-0",
abstract = "Rich user-item interactions are essential for building reliable recommender systems, as they reflect user preference patterns. However, minor language news recommendation platforms suffer from limited interactions due to a small user base. A natural solution is to apply well-established English recommender systems to minor language news recommendation, but the linguistic gap can lead to inaccurate modeling of minor language news content. Therefore, enabling few-shot minor language news recommender systems to capture both content information and preference patterns remains a challenge. Based on the observation that preference patterns are similar across languages, we propose a minor language news recommendation model by cross-lingual preference pattern transfer, named PPT. Our model adopts the widely used two-tower architecture and employs the large language model as the backbone of the news encoder. Through cross-lingual alignment, the strong English capability of the news encoder is extended to minor languages, thus enhancing news content representations. Additionally, through cross-lingual news augmentation, PPT simulates interactions of minor language news in the English domain, which facilitates the transfer of preference patterns from the many-shot English domain to the few-shot minor language domain. Extensive experiments on two real-world datasets across 15 minor languages demonstrate the superiority and generalization of our proposed PPT in addressing minor language news recommendation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-chen-2025-ppt">
<titleInfo>
<title>PPT: A Minor Language News Recommendation Model via Cross-Lingual Preference Pattern Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiyang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Rich user-item interactions are essential for building reliable recommender systems, as they reflect user preference patterns. However, minor language news recommendation platforms suffer from limited interactions due to a small user base. A natural solution is to apply well-established English recommender systems to minor language news recommendation, but the linguistic gap can lead to inaccurate modeling of minor language news content. Therefore, enabling few-shot minor language news recommender systems to capture both content information and preference patterns remains a challenge. Based on the observation that preference patterns are similar across languages, we propose a minor language news recommendation model by cross-lingual preference pattern transfer, named PPT. Our model adopts the widely used two-tower architecture and employs the large language model as the backbone of the news encoder. Through cross-lingual alignment, the strong English capability of the news encoder is extended to minor languages, thus enhancing news content representations. Additionally, through cross-lingual news augmentation, PPT simulates interactions of minor language news in the English domain, which facilitates the transfer of preference patterns from the many-shot English domain to the few-shot minor language domain. Extensive experiments on two real-world datasets across 15 minor languages demonstrate the superiority and generalization of our proposed PPT in addressing minor language news recommendation.</abstract>
<identifier type="citekey">zhang-chen-2025-ppt</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.526</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.526/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>10728</start>
<end>10745</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PPT: A Minor Language News Recommendation Model via Cross-Lingual Preference Pattern Transfer
%A Zhang, Yiyang
%A Chen, Nan
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F zhang-chen-2025-ppt
%X Rich user-item interactions are essential for building reliable recommender systems, as they reflect user preference patterns. However, minor language news recommendation platforms suffer from limited interactions due to a small user base. A natural solution is to apply well-established English recommender systems to minor language news recommendation, but the linguistic gap can lead to inaccurate modeling of minor language news content. Therefore, enabling few-shot minor language news recommender systems to capture both content information and preference patterns remains a challenge. Based on the observation that preference patterns are similar across languages, we propose a minor language news recommendation model by cross-lingual preference pattern transfer, named PPT. Our model adopts the widely used two-tower architecture and employs the large language model as the backbone of the news encoder. Through cross-lingual alignment, the strong English capability of the news encoder is extended to minor languages, thus enhancing news content representations. Additionally, through cross-lingual news augmentation, PPT simulates interactions of minor language news in the English domain, which facilitates the transfer of preference patterns from the many-shot English domain to the few-shot minor language domain. Extensive experiments on two real-world datasets across 15 minor languages demonstrate the superiority and generalization of our proposed PPT in addressing minor language news recommendation.
%R 10.18653/v1/2025.acl-long.526
%U https://aclanthology.org/2025.acl-long.526/
%U https://doi.org/10.18653/v1/2025.acl-long.526
%P 10728-10745
Markdown (Informal)
[PPT: A Minor Language News Recommendation Model via Cross-Lingual Preference Pattern Transfer](https://aclanthology.org/2025.acl-long.526/) (Zhang & Chen, ACL 2025)
ACL