@inproceedings{pham-etal-2025-mitigating,
title = "Mitigating Non-Representative Prototypes and Representation Bias in Few-Shot Continual Relation Extraction",
author = "Pham, Thanh Duc and
Hai, Nam Le and
Van, Linh Ngo and
Diep, Nguyen Thi Ngoc and
Dinh, Sang and
Nguyen, Thien Huu",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.530/",
doi = "10.18653/v1/2025.acl-long.530",
pages = "10791--10809",
ISBN = "979-8-89176-251-0",
abstract = "To address the phenomenon of similar classes, existing methods in few-shot continual relation extraction (FCRE) face two main challenges: non-representative prototypes and representation bias, especially when the number of available samples is limited. In our work, we propose Minion to address these challenges. Firstly, we leverage the General Orthogonal Frame (GOF) structure, based on the concept of Neural Collapse, to create robust class prototypes with clear separation, even between analogous classes. Secondly, we utilize label description representations as global class representatives within the fast-slow contrastive learning paradigm. These representations consistently encapsulate the essential attributes of each relation, acting as global information that helps mitigate overfitting and reduces representation bias caused by the limited local few-shot examples within a class. Extensive experiments on well-known FCRE benchmarks show that our method outperforms state-of-the-art approaches, demonstrating its effectiveness for advancing RE system."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pham-etal-2025-mitigating">
<titleInfo>
<title>Mitigating Non-Representative Prototypes and Representation Bias in Few-Shot Continual Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thanh</namePart>
<namePart type="given">Duc</namePart>
<namePart type="family">Pham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nam</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Hai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linh</namePart>
<namePart type="given">Ngo</namePart>
<namePart type="family">Van</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Thi</namePart>
<namePart type="given">Ngoc</namePart>
<namePart type="family">Diep</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sang</namePart>
<namePart type="family">Dinh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="given">Huu</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>To address the phenomenon of similar classes, existing methods in few-shot continual relation extraction (FCRE) face two main challenges: non-representative prototypes and representation bias, especially when the number of available samples is limited. In our work, we propose Minion to address these challenges. Firstly, we leverage the General Orthogonal Frame (GOF) structure, based on the concept of Neural Collapse, to create robust class prototypes with clear separation, even between analogous classes. Secondly, we utilize label description representations as global class representatives within the fast-slow contrastive learning paradigm. These representations consistently encapsulate the essential attributes of each relation, acting as global information that helps mitigate overfitting and reduces representation bias caused by the limited local few-shot examples within a class. Extensive experiments on well-known FCRE benchmarks show that our method outperforms state-of-the-art approaches, demonstrating its effectiveness for advancing RE system.</abstract>
<identifier type="citekey">pham-etal-2025-mitigating</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.530</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.530/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>10791</start>
<end>10809</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mitigating Non-Representative Prototypes and Representation Bias in Few-Shot Continual Relation Extraction
%A Pham, Thanh Duc
%A Hai, Nam Le
%A Van, Linh Ngo
%A Diep, Nguyen Thi Ngoc
%A Dinh, Sang
%A Nguyen, Thien Huu
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F pham-etal-2025-mitigating
%X To address the phenomenon of similar classes, existing methods in few-shot continual relation extraction (FCRE) face two main challenges: non-representative prototypes and representation bias, especially when the number of available samples is limited. In our work, we propose Minion to address these challenges. Firstly, we leverage the General Orthogonal Frame (GOF) structure, based on the concept of Neural Collapse, to create robust class prototypes with clear separation, even between analogous classes. Secondly, we utilize label description representations as global class representatives within the fast-slow contrastive learning paradigm. These representations consistently encapsulate the essential attributes of each relation, acting as global information that helps mitigate overfitting and reduces representation bias caused by the limited local few-shot examples within a class. Extensive experiments on well-known FCRE benchmarks show that our method outperforms state-of-the-art approaches, demonstrating its effectiveness for advancing RE system.
%R 10.18653/v1/2025.acl-long.530
%U https://aclanthology.org/2025.acl-long.530/
%U https://doi.org/10.18653/v1/2025.acl-long.530
%P 10791-10809
Markdown (Informal)
[Mitigating Non-Representative Prototypes and Representation Bias in Few-Shot Continual Relation Extraction](https://aclanthology.org/2025.acl-long.530/) (Pham et al., ACL 2025)
ACL