@inproceedings{zhang-etal-2025-uora,
title = "{UORA}: Uniform Orthogonal Reinitialization Adaptation in Parameter Efficient Fine-Tuning of Large Models",
author = "Zhang, Xueyan and
Zhao, Jinman and
Yang, Zhifei and
Zhong, Yibo and
Guan, Shuhao and
Cao, Linbo and
Wang, Yining",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.575/",
doi = "10.18653/v1/2025.acl-long.575",
pages = "11709--11728",
ISBN = "979-8-89176-251-0",
abstract = "This paper introduces UoRA, a novel parameter-efficient fine-tuning (PEFT) approach for large language models (LLMs). UoRA achieves state-of-the-art efficiency by leveraging a low-rank approximation method that reduces the number of trainable parameters without compromising performance. Unlike existing methods such as LoRA and VeRA, UoRA employs a re-parametrization mechanism that eliminates the need to adapt frozen projection matrices while maintaining shared projection layers across the model. This results in halving the trainable parameters compared to LoRA and outperforming VeRA in computation and storage efficiency. Comprehensive experiments across various benchmarks demonstrate UoRA{'}s superiority in achieving competitive fine-tuning performance with minimal computational overhead. We demonstrate its performance on GLUE and E2E benchmarks and is effectiveness in instruction-tuning large language models and image classification models. Our contributions establish a new paradigm for scalable and resource-efficient fine-tuning of LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-uora">
<titleInfo>
<title>UORA: Uniform Orthogonal Reinitialization Adaptation in Parameter Efficient Fine-Tuning of Large Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xueyan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinman</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhifei</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yibo</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuhao</namePart>
<namePart type="family">Guan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linbo</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yining</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>This paper introduces UoRA, a novel parameter-efficient fine-tuning (PEFT) approach for large language models (LLMs). UoRA achieves state-of-the-art efficiency by leveraging a low-rank approximation method that reduces the number of trainable parameters without compromising performance. Unlike existing methods such as LoRA and VeRA, UoRA employs a re-parametrization mechanism that eliminates the need to adapt frozen projection matrices while maintaining shared projection layers across the model. This results in halving the trainable parameters compared to LoRA and outperforming VeRA in computation and storage efficiency. Comprehensive experiments across various benchmarks demonstrate UoRA’s superiority in achieving competitive fine-tuning performance with minimal computational overhead. We demonstrate its performance on GLUE and E2E benchmarks and is effectiveness in instruction-tuning large language models and image classification models. Our contributions establish a new paradigm for scalable and resource-efficient fine-tuning of LLMs.</abstract>
<identifier type="citekey">zhang-etal-2025-uora</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.575</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.575/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>11709</start>
<end>11728</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UORA: Uniform Orthogonal Reinitialization Adaptation in Parameter Efficient Fine-Tuning of Large Models
%A Zhang, Xueyan
%A Zhao, Jinman
%A Yang, Zhifei
%A Zhong, Yibo
%A Guan, Shuhao
%A Cao, Linbo
%A Wang, Yining
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F zhang-etal-2025-uora
%X This paper introduces UoRA, a novel parameter-efficient fine-tuning (PEFT) approach for large language models (LLMs). UoRA achieves state-of-the-art efficiency by leveraging a low-rank approximation method that reduces the number of trainable parameters without compromising performance. Unlike existing methods such as LoRA and VeRA, UoRA employs a re-parametrization mechanism that eliminates the need to adapt frozen projection matrices while maintaining shared projection layers across the model. This results in halving the trainable parameters compared to LoRA and outperforming VeRA in computation and storage efficiency. Comprehensive experiments across various benchmarks demonstrate UoRA’s superiority in achieving competitive fine-tuning performance with minimal computational overhead. We demonstrate its performance on GLUE and E2E benchmarks and is effectiveness in instruction-tuning large language models and image classification models. Our contributions establish a new paradigm for scalable and resource-efficient fine-tuning of LLMs.
%R 10.18653/v1/2025.acl-long.575
%U https://aclanthology.org/2025.acl-long.575/
%U https://doi.org/10.18653/v1/2025.acl-long.575
%P 11709-11728
Markdown (Informal)
[UORA: Uniform Orthogonal Reinitialization Adaptation in Parameter Efficient Fine-Tuning of Large Models](https://aclanthology.org/2025.acl-long.575/) (Zhang et al., ACL 2025)
ACL