@inproceedings{hoyle-etal-2025-proxann,
title = "{P}rox{A}nn: Use-Oriented Evaluations of Topic Models and Document Clustering",
author = "Hoyle, Alexander and
Calvo-Bartolom{\'e}, Lorena and
Boyd-Graber, Jordan and
Resnik, Philip",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.772/",
doi = "10.18653/v1/2025.acl-long.772",
pages = "15872--15897",
ISBN = "979-8-89176-251-0",
abstract = "Topic models and document-clustering evaluations either use automated metrics that align poorly with human preferences, or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners' real-world usage of models. Annotators{---}or an LLM-based proxy{---}review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxy is statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hoyle-etal-2025-proxann">
<titleInfo>
<title>ProxAnn: Use-Oriented Evaluations of Topic Models and Document Clustering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Hoyle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lorena</namePart>
<namePart type="family">Calvo-Bartolomé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Topic models and document-clustering evaluations either use automated metrics that align poorly with human preferences, or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners’ real-world usage of models. Annotators—or an LLM-based proxy—review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxy is statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations.</abstract>
<identifier type="citekey">hoyle-etal-2025-proxann</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.772</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.772/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>15872</start>
<end>15897</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ProxAnn: Use-Oriented Evaluations of Topic Models and Document Clustering
%A Hoyle, Alexander
%A Calvo-Bartolomé, Lorena
%A Boyd-Graber, Jordan
%A Resnik, Philip
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F hoyle-etal-2025-proxann
%X Topic models and document-clustering evaluations either use automated metrics that align poorly with human preferences, or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners’ real-world usage of models. Annotators—or an LLM-based proxy—review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxy is statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations.
%R 10.18653/v1/2025.acl-long.772
%U https://aclanthology.org/2025.acl-long.772/
%U https://doi.org/10.18653/v1/2025.acl-long.772
%P 15872-15897
Markdown (Informal)
[ProxAnn: Use-Oriented Evaluations of Topic Models and Document Clustering](https://aclanthology.org/2025.acl-long.772/) (Hoyle et al., ACL 2025)
ACL