@inproceedings{chaudhuri-etal-2025-tripcraft,
title = "{T}rip{C}raft: A Benchmark for Spatio-Temporally Fine Grained Travel Planning",
author = "Chaudhuri, Soumyabrata and
Purkar, Pranav and
Raghav, Ritwik and
Mallick, Shubhojit and
Gupta, Manish and
Jana, Abhik and
Ghosh, Shreya",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.834/",
doi = "10.18653/v1/2025.acl-long.834",
pages = "17035--17064",
ISBN = "979-8-89176-251-0",
abstract = "Recent advancements in probing Large Language Models (LLMs) have explored their latent potential as personalized travel planning agents, though this remains a rather nascent field. Existing benchmarks, such as TravelPlanner and TravelPlanner+, rely on semi-synthetic data as well ignoring several key components of travel planning, limiting their real-world applicability. Therefore, we introduce TripCraft, a spatio-temporally coherent travel planning dataset incorporating real-world constraints, including public transit schedules, public events, varied attraction categories, and user personas for enhanced personalization. Our dataset enables more detailed trip itinerary generation (including duration spent at each point of interest based on users' persona, transit between two points of interest, etc.) while ensuring spatio-temporal consistency. Further, we propose novel evaluation metrics (temporal meal score, attraction score, spatial score, ordering score, and persona score) to assess LLM-generated plans across temporal, spatial, sequential, and personal dimensions, overcoming the limitations of commonsense and hard constraint metrics. Interestingly, our parameter-informed setting significantly enhances meal scheduling, improving performance from 61{\%} to 80{\%} in the 7-day scenario- as quantified by a 19{\%} gain in our temporal meal score. Moreover, TripCraft serves as a high-quality benchmark for advancing personalized LLM-driven travel planning."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chaudhuri-etal-2025-tripcraft">
<titleInfo>
<title>TripCraft: A Benchmark for Spatio-Temporally Fine Grained Travel Planning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soumyabrata</namePart>
<namePart type="family">Chaudhuri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pranav</namePart>
<namePart type="family">Purkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritwik</namePart>
<namePart type="family">Raghav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubhojit</namePart>
<namePart type="family">Mallick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manish</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhik</namePart>
<namePart type="family">Jana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shreya</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Recent advancements in probing Large Language Models (LLMs) have explored their latent potential as personalized travel planning agents, though this remains a rather nascent field. Existing benchmarks, such as TravelPlanner and TravelPlanner+, rely on semi-synthetic data as well ignoring several key components of travel planning, limiting their real-world applicability. Therefore, we introduce TripCraft, a spatio-temporally coherent travel planning dataset incorporating real-world constraints, including public transit schedules, public events, varied attraction categories, and user personas for enhanced personalization. Our dataset enables more detailed trip itinerary generation (including duration spent at each point of interest based on users’ persona, transit between two points of interest, etc.) while ensuring spatio-temporal consistency. Further, we propose novel evaluation metrics (temporal meal score, attraction score, spatial score, ordering score, and persona score) to assess LLM-generated plans across temporal, spatial, sequential, and personal dimensions, overcoming the limitations of commonsense and hard constraint metrics. Interestingly, our parameter-informed setting significantly enhances meal scheduling, improving performance from 61% to 80% in the 7-day scenario- as quantified by a 19% gain in our temporal meal score. Moreover, TripCraft serves as a high-quality benchmark for advancing personalized LLM-driven travel planning.</abstract>
<identifier type="citekey">chaudhuri-etal-2025-tripcraft</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.834</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.834/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>17035</start>
<end>17064</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TripCraft: A Benchmark for Spatio-Temporally Fine Grained Travel Planning
%A Chaudhuri, Soumyabrata
%A Purkar, Pranav
%A Raghav, Ritwik
%A Mallick, Shubhojit
%A Gupta, Manish
%A Jana, Abhik
%A Ghosh, Shreya
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F chaudhuri-etal-2025-tripcraft
%X Recent advancements in probing Large Language Models (LLMs) have explored their latent potential as personalized travel planning agents, though this remains a rather nascent field. Existing benchmarks, such as TravelPlanner and TravelPlanner+, rely on semi-synthetic data as well ignoring several key components of travel planning, limiting their real-world applicability. Therefore, we introduce TripCraft, a spatio-temporally coherent travel planning dataset incorporating real-world constraints, including public transit schedules, public events, varied attraction categories, and user personas for enhanced personalization. Our dataset enables more detailed trip itinerary generation (including duration spent at each point of interest based on users’ persona, transit between two points of interest, etc.) while ensuring spatio-temporal consistency. Further, we propose novel evaluation metrics (temporal meal score, attraction score, spatial score, ordering score, and persona score) to assess LLM-generated plans across temporal, spatial, sequential, and personal dimensions, overcoming the limitations of commonsense and hard constraint metrics. Interestingly, our parameter-informed setting significantly enhances meal scheduling, improving performance from 61% to 80% in the 7-day scenario- as quantified by a 19% gain in our temporal meal score. Moreover, TripCraft serves as a high-quality benchmark for advancing personalized LLM-driven travel planning.
%R 10.18653/v1/2025.acl-long.834
%U https://aclanthology.org/2025.acl-long.834/
%U https://doi.org/10.18653/v1/2025.acl-long.834
%P 17035-17064
Markdown (Informal)
[TripCraft: A Benchmark for Spatio-Temporally Fine Grained Travel Planning](https://aclanthology.org/2025.acl-long.834/) (Chaudhuri et al., ACL 2025)
ACL
- Soumyabrata Chaudhuri, Pranav Purkar, Ritwik Raghav, Shubhojit Mallick, Manish Gupta, Abhik Jana, and Shreya Ghosh. 2025. TripCraft: A Benchmark for Spatio-Temporally Fine Grained Travel Planning. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 17035–17064, Vienna, Austria. Association for Computational Linguistics.