@inproceedings{bi-etal-2025-decoding,
title = "Decoding by Contrasting Knowledge: Enhancing Large Language Model Confidence on Edited Facts",
author = "Bi, Baolong and
Liu, Shenghua and
Mei, Lingrui and
Wang, Yiwei and
Fang, Junfeng and
Ji, Pengliang and
Cheng, Xueqi",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.841/",
doi = "10.18653/v1/2025.acl-long.841",
pages = "17198--17208",
ISBN = "979-8-89176-251-0",
abstract = "The knowledge within large language models (LLMs) may become outdated quickly. While in-context editing (ICE) is currently the most effective method for knowledge editing (KE), it is constrained by the black-box modeling of LLMs and thus lacks interpretability. Our work aims to elucidate the superior performance of ICE in KE by analyzing the impacts of in-context new knowledge on token-wise distributions. We observe that despite a significant boost in logits of the new knowledge, the performance of ICE is still hindered by stubborn knowledge. We propose a novel approach termed Decoding by Contrasting Knowledge (DeCK). DeCK derives the distribution of the next token by contrasting the logits obtained from the newly edited knowledge guided by ICE with those from the unedited parametric knowledge. Our experiments demonstrate that DeCK enhances the confidence of LLMs in edited facts. For instance, it improves the performance of LLaMA3-8B-instruct on MQuAKE by up to 219{\%}, demonstrating its capability to strengthen ICE. DeCK can be easily integrated into any ICE method as a decoding component to enhance editing capabilities."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bi-etal-2025-decoding">
<titleInfo>
<title>Decoding by Contrasting Knowledge: Enhancing Large Language Model Confidence on Edited Facts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Baolong</namePart>
<namePart type="family">Bi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shenghua</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingrui</namePart>
<namePart type="family">Mei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiwei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junfeng</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengliang</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xueqi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>The knowledge within large language models (LLMs) may become outdated quickly. While in-context editing (ICE) is currently the most effective method for knowledge editing (KE), it is constrained by the black-box modeling of LLMs and thus lacks interpretability. Our work aims to elucidate the superior performance of ICE in KE by analyzing the impacts of in-context new knowledge on token-wise distributions. We observe that despite a significant boost in logits of the new knowledge, the performance of ICE is still hindered by stubborn knowledge. We propose a novel approach termed Decoding by Contrasting Knowledge (DeCK). DeCK derives the distribution of the next token by contrasting the logits obtained from the newly edited knowledge guided by ICE with those from the unedited parametric knowledge. Our experiments demonstrate that DeCK enhances the confidence of LLMs in edited facts. For instance, it improves the performance of LLaMA3-8B-instruct on MQuAKE by up to 219%, demonstrating its capability to strengthen ICE. DeCK can be easily integrated into any ICE method as a decoding component to enhance editing capabilities.</abstract>
<identifier type="citekey">bi-etal-2025-decoding</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.841</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.841/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>17198</start>
<end>17208</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Decoding by Contrasting Knowledge: Enhancing Large Language Model Confidence on Edited Facts
%A Bi, Baolong
%A Liu, Shenghua
%A Mei, Lingrui
%A Wang, Yiwei
%A Fang, Junfeng
%A Ji, Pengliang
%A Cheng, Xueqi
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F bi-etal-2025-decoding
%X The knowledge within large language models (LLMs) may become outdated quickly. While in-context editing (ICE) is currently the most effective method for knowledge editing (KE), it is constrained by the black-box modeling of LLMs and thus lacks interpretability. Our work aims to elucidate the superior performance of ICE in KE by analyzing the impacts of in-context new knowledge on token-wise distributions. We observe that despite a significant boost in logits of the new knowledge, the performance of ICE is still hindered by stubborn knowledge. We propose a novel approach termed Decoding by Contrasting Knowledge (DeCK). DeCK derives the distribution of the next token by contrasting the logits obtained from the newly edited knowledge guided by ICE with those from the unedited parametric knowledge. Our experiments demonstrate that DeCK enhances the confidence of LLMs in edited facts. For instance, it improves the performance of LLaMA3-8B-instruct on MQuAKE by up to 219%, demonstrating its capability to strengthen ICE. DeCK can be easily integrated into any ICE method as a decoding component to enhance editing capabilities.
%R 10.18653/v1/2025.acl-long.841
%U https://aclanthology.org/2025.acl-long.841/
%U https://doi.org/10.18653/v1/2025.acl-long.841
%P 17198-17208
Markdown (Informal)
[Decoding by Contrasting Knowledge: Enhancing Large Language Model Confidence on Edited Facts](https://aclanthology.org/2025.acl-long.841/) (Bi et al., ACL 2025)
ACL