@inproceedings{li-etal-2025-open,
title = "Open-World Attribute Mining for {E}-Commerce Products with Multimodal Self-Correction Instruction Tuning",
author = "Li, Jiaqi and
Li, Yanming and
Shen, Xiaoli and
Zhang, Chuanyi and
Qi, Guilin and
Bi, Sheng",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.85/",
doi = "10.18653/v1/2025.acl-long.85",
pages = "1702--1714",
ISBN = "979-8-89176-251-0",
abstract = "In e-commerce, effective product Attribute Mining (AM) is essential for improving product features and aiding consumer decisions. However, current AM methods often focus on extracting attributes from unimodal text, underutilizing multimodal data. In this paper, we propose a novel framework called Multimodal Self-Correction Instruction Tuning (MSIT) to mine new potential attributes from both images and text with Multimodal Large Language Models. The tuning process involves two datasets: Attribute Generation Tuning Data (AGTD) and Chain-of-Thought Tuning Data (CTTD). AGTD is constructed utilizing in-context learning with a small set of seed attributes, aiding the MLLM in accurately extracting attribute-value pairs from multimodal information. To introduce explicit reasoning and improve the extraction in accuracy, we construct CTTD, which incorporates a structured 5-step reasoning process for self-correction. Finally, we employ a 3-stage inference process to filter out redundant attributes and sequentially validate each generated attribute. Comprehensive experimental results on two datasets show that MSIT outperforms state-of-the-art methods. We will release our code and data in the near future."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-open">
<titleInfo>
<title>Open-World Attribute Mining for E-Commerce Products with Multimodal Self-Correction Instruction Tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaqi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanming</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoli</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuanyi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guilin</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Bi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>In e-commerce, effective product Attribute Mining (AM) is essential for improving product features and aiding consumer decisions. However, current AM methods often focus on extracting attributes from unimodal text, underutilizing multimodal data. In this paper, we propose a novel framework called Multimodal Self-Correction Instruction Tuning (MSIT) to mine new potential attributes from both images and text with Multimodal Large Language Models. The tuning process involves two datasets: Attribute Generation Tuning Data (AGTD) and Chain-of-Thought Tuning Data (CTTD). AGTD is constructed utilizing in-context learning with a small set of seed attributes, aiding the MLLM in accurately extracting attribute-value pairs from multimodal information. To introduce explicit reasoning and improve the extraction in accuracy, we construct CTTD, which incorporates a structured 5-step reasoning process for self-correction. Finally, we employ a 3-stage inference process to filter out redundant attributes and sequentially validate each generated attribute. Comprehensive experimental results on two datasets show that MSIT outperforms state-of-the-art methods. We will release our code and data in the near future.</abstract>
<identifier type="citekey">li-etal-2025-open</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.85</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.85/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1702</start>
<end>1714</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Open-World Attribute Mining for E-Commerce Products with Multimodal Self-Correction Instruction Tuning
%A Li, Jiaqi
%A Li, Yanming
%A Shen, Xiaoli
%A Zhang, Chuanyi
%A Qi, Guilin
%A Bi, Sheng
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F li-etal-2025-open
%X In e-commerce, effective product Attribute Mining (AM) is essential for improving product features and aiding consumer decisions. However, current AM methods often focus on extracting attributes from unimodal text, underutilizing multimodal data. In this paper, we propose a novel framework called Multimodal Self-Correction Instruction Tuning (MSIT) to mine new potential attributes from both images and text with Multimodal Large Language Models. The tuning process involves two datasets: Attribute Generation Tuning Data (AGTD) and Chain-of-Thought Tuning Data (CTTD). AGTD is constructed utilizing in-context learning with a small set of seed attributes, aiding the MLLM in accurately extracting attribute-value pairs from multimodal information. To introduce explicit reasoning and improve the extraction in accuracy, we construct CTTD, which incorporates a structured 5-step reasoning process for self-correction. Finally, we employ a 3-stage inference process to filter out redundant attributes and sequentially validate each generated attribute. Comprehensive experimental results on two datasets show that MSIT outperforms state-of-the-art methods. We will release our code and data in the near future.
%R 10.18653/v1/2025.acl-long.85
%U https://aclanthology.org/2025.acl-long.85/
%U https://doi.org/10.18653/v1/2025.acl-long.85
%P 1702-1714
Markdown (Informal)
[Open-World Attribute Mining for E-Commerce Products with Multimodal Self-Correction Instruction Tuning](https://aclanthology.org/2025.acl-long.85/) (Li et al., ACL 2025)
ACL