@inproceedings{chen-etal-2025-hierarchical,
title = "Hierarchical Attention Generates Better Proofs",
author = "Chen, Jianlong and
Li, Chao and
Yuan, Yang and
Yao, Andrew C",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.856/",
doi = "10.18653/v1/2025.acl-long.856",
pages = "17506--17520",
ISBN = "979-8-89176-251-0",
abstract = "Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce \textbf{Hierarchical Attention}, a regularization method that aligns LLMs' attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05{\%} on miniF2F and 1.69{\%} on ProofNet while reducing proof complexity by 23.81{\%} and 16.50{\%} respectively. The code and models will be available."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-hierarchical">
<titleInfo>
<title>Hierarchical Attention Generates Better Proofs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianlong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce Hierarchical Attention, a regularization method that aligns LLMs’ attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05% on miniF2F and 1.69% on ProofNet while reducing proof complexity by 23.81% and 16.50% respectively. The code and models will be available.</abstract>
<identifier type="citekey">chen-etal-2025-hierarchical</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.856</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.856/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>17506</start>
<end>17520</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hierarchical Attention Generates Better Proofs
%A Chen, Jianlong
%A Li, Chao
%A Yuan, Yang
%A Yao, Andrew C.
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F chen-etal-2025-hierarchical
%X Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce Hierarchical Attention, a regularization method that aligns LLMs’ attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05% on miniF2F and 1.69% on ProofNet while reducing proof complexity by 23.81% and 16.50% respectively. The code and models will be available.
%R 10.18653/v1/2025.acl-long.856
%U https://aclanthology.org/2025.acl-long.856/
%U https://doi.org/10.18653/v1/2025.acl-long.856
%P 17506-17520
Markdown (Informal)
[Hierarchical Attention Generates Better Proofs](https://aclanthology.org/2025.acl-long.856/) (Chen et al., ACL 2025)
ACL
- Jianlong Chen, Chao Li, Yang Yuan, and Andrew C Yao. 2025. Hierarchical Attention Generates Better Proofs. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 17506–17520, Vienna, Austria. Association for Computational Linguistics.