@inproceedings{liu-etal-2025-insight,
title = "Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal {LLM}s",
author = "Liu, Xiaoyuan and
Wang, Wenxuan and
Yuan, Youliang and
Huang, Jen-tse and
Liu, Qiuzhi and
He, Pinjia and
Tu, Zhaopeng",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.872/",
doi = "10.18653/v1/2025.acl-long.872",
pages = "17825--17846",
ISBN = "979-8-89176-251-0",
abstract = "This paper explores the problem of commonsense level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model{'}s internal commonsense knowledge. To study this issue, we introduce an automated framework, augmented with human-in-the-loop quality control, to generate inputs designed to simulate and evaluate these conflicts in MLLMs. Using this framework, we have crafted a diagnostic benchmark consisting of 374 original images and 1,122 high-quality question-answer (QA) pairs. The benchmark covers two aspects of conflict and three question types, providing a thorough assessment tool. We apply this benchmark to assess the conflict-resolution capabilities of nine representative MLLMs from various model families. Our results indicate an evident over-reliance on parametric knowledge for approximately 20{\%} of all queries, especially among Yes-No and action-related problems. Based on these findings, we evaluate the effectiveness of existing approaches to mitigating the conflicts and compare them to our ``Focus-on-Vision'' prompting strategy. Despite some improvement, the vision-knowledge conflict remains unresolved and can be further scaled through our data construction framework. Our proposed framework, benchmark, and analysis contribute to the understanding and mitigation of vision-knowledge conflicts in MLLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-insight">
<titleInfo>
<title>Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenxuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youliang</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jen-tse</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiuzhi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pinjia</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaopeng</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>This paper explores the problem of commonsense level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model’s internal commonsense knowledge. To study this issue, we introduce an automated framework, augmented with human-in-the-loop quality control, to generate inputs designed to simulate and evaluate these conflicts in MLLMs. Using this framework, we have crafted a diagnostic benchmark consisting of 374 original images and 1,122 high-quality question-answer (QA) pairs. The benchmark covers two aspects of conflict and three question types, providing a thorough assessment tool. We apply this benchmark to assess the conflict-resolution capabilities of nine representative MLLMs from various model families. Our results indicate an evident over-reliance on parametric knowledge for approximately 20% of all queries, especially among Yes-No and action-related problems. Based on these findings, we evaluate the effectiveness of existing approaches to mitigating the conflicts and compare them to our “Focus-on-Vision” prompting strategy. Despite some improvement, the vision-knowledge conflict remains unresolved and can be further scaled through our data construction framework. Our proposed framework, benchmark, and analysis contribute to the understanding and mitigation of vision-knowledge conflicts in MLLMs.</abstract>
<identifier type="citekey">liu-etal-2025-insight</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.872</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.872/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>17825</start>
<end>17846</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs
%A Liu, Xiaoyuan
%A Wang, Wenxuan
%A Yuan, Youliang
%A Huang, Jen-tse
%A Liu, Qiuzhi
%A He, Pinjia
%A Tu, Zhaopeng
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F liu-etal-2025-insight
%X This paper explores the problem of commonsense level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model’s internal commonsense knowledge. To study this issue, we introduce an automated framework, augmented with human-in-the-loop quality control, to generate inputs designed to simulate and evaluate these conflicts in MLLMs. Using this framework, we have crafted a diagnostic benchmark consisting of 374 original images and 1,122 high-quality question-answer (QA) pairs. The benchmark covers two aspects of conflict and three question types, providing a thorough assessment tool. We apply this benchmark to assess the conflict-resolution capabilities of nine representative MLLMs from various model families. Our results indicate an evident over-reliance on parametric knowledge for approximately 20% of all queries, especially among Yes-No and action-related problems. Based on these findings, we evaluate the effectiveness of existing approaches to mitigating the conflicts and compare them to our “Focus-on-Vision” prompting strategy. Despite some improvement, the vision-knowledge conflict remains unresolved and can be further scaled through our data construction framework. Our proposed framework, benchmark, and analysis contribute to the understanding and mitigation of vision-knowledge conflicts in MLLMs.
%R 10.18653/v1/2025.acl-long.872
%U https://aclanthology.org/2025.acl-long.872/
%U https://doi.org/10.18653/v1/2025.acl-long.872
%P 17825-17846
Markdown (Informal)
[Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs](https://aclanthology.org/2025.acl-long.872/) (Liu et al., ACL 2025)
ACL