@inproceedings{jun-lee-2025-exploring,
title = "Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation",
author = "Jun, Yonghyun and
Lee, Hwanhee",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.900/",
doi = "10.18653/v1/2025.acl-long.900",
pages = "18384--18402",
ISBN = "979-8-89176-251-0",
abstract = "Personalized dialogue systems have advanced considerably with the integration of user-specific personas into large language models (LLMs). However, while LLMs can effectively generate personalized responses, the influence of persona sentiment on dialogue quality remains underexplored. In this work, we conduct a large-scale analysis of dialogues generated using a range of polarized user profiles. Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes. In contrast, positively polarized profiles yield dialogues that selectively incorporate persona information, resulting in smoother interactions. Furthermore, we find that personas with weak or neutral sentiment generally produce lower-quality dialogues. Motivated by these findings, we propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism and sentiment-aware prompting. Our study provides new insights into the sensitivity of LLMs to persona sentiment and offers guidance for developing more robust and nuanced personalized dialogue systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jun-lee-2025-exploring">
<titleInfo>
<title>Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yonghyun</namePart>
<namePart type="family">Jun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hwanhee</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Personalized dialogue systems have advanced considerably with the integration of user-specific personas into large language models (LLMs). However, while LLMs can effectively generate personalized responses, the influence of persona sentiment on dialogue quality remains underexplored. In this work, we conduct a large-scale analysis of dialogues generated using a range of polarized user profiles. Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes. In contrast, positively polarized profiles yield dialogues that selectively incorporate persona information, resulting in smoother interactions. Furthermore, we find that personas with weak or neutral sentiment generally produce lower-quality dialogues. Motivated by these findings, we propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism and sentiment-aware prompting. Our study provides new insights into the sensitivity of LLMs to persona sentiment and offers guidance for developing more robust and nuanced personalized dialogue systems.</abstract>
<identifier type="citekey">jun-lee-2025-exploring</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.900</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.900/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>18384</start>
<end>18402</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation
%A Jun, Yonghyun
%A Lee, Hwanhee
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F jun-lee-2025-exploring
%X Personalized dialogue systems have advanced considerably with the integration of user-specific personas into large language models (LLMs). However, while LLMs can effectively generate personalized responses, the influence of persona sentiment on dialogue quality remains underexplored. In this work, we conduct a large-scale analysis of dialogues generated using a range of polarized user profiles. Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes. In contrast, positively polarized profiles yield dialogues that selectively incorporate persona information, resulting in smoother interactions. Furthermore, we find that personas with weak or neutral sentiment generally produce lower-quality dialogues. Motivated by these findings, we propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism and sentiment-aware prompting. Our study provides new insights into the sensitivity of LLMs to persona sentiment and offers guidance for developing more robust and nuanced personalized dialogue systems.
%R 10.18653/v1/2025.acl-long.900
%U https://aclanthology.org/2025.acl-long.900/
%U https://doi.org/10.18653/v1/2025.acl-long.900
%P 18384-18402
Markdown (Informal)
[Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation](https://aclanthology.org/2025.acl-long.900/) (Jun & Lee, ACL 2025)
ACL