@inproceedings{kim-etal-2025-pvp,
title = "{PVP}: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings",
author = "Kim, Junseo and
Han, Jongwook and
Choi, Dongmin and
Yoon, Jongwook and
Lee, Eun-Ju and
Jo, Yohan",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.942/",
doi = "10.18653/v1/2025.acl-long.942",
pages = "19209--19237",
ISBN = "979-8-89176-251-0",
abstract = "Visual persuasion, which uses visual elements to influence cognition and behaviors, is crucial in fields such as advertising and politicalcommunication. With recent advancements in artificial intelligence, there is growing potential to develop persuasive systems that automatically generate persuasive images tailored to individuals. However, a significant bottleneck in this area is the lack of comprehensivedatasets that connect the persuasiveness of images with the personal information about those who evaluated the images. To address this gap and facilitate technological advancements in personalized visual persuasion, we release the Personalized Visual Persuasion (PVP) dataset, comprising 28,454 persuasive images across 596 messages and 9 persuasion strategies. Importantly, the PVP dataset provides persuasiveness scores of images evaluated by 2,521 human annotators, along with their demographic and psychological characteristics (personality traits and values). We demonstrate the utility of our dataset by developing a persuasive image generator and an automated evaluator, and establish benchmark baselines. Our experiments reveal that incorporating psychological characteristics enhances the generation and evaluation of persuasive images, providing valuable insights for personalized visual persuasion."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2025-pvp">
<titleInfo>
<title>PVP: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junseo</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jongwook</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongmin</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jongwook</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eun-Ju</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohan</namePart>
<namePart type="family">Jo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Visual persuasion, which uses visual elements to influence cognition and behaviors, is crucial in fields such as advertising and politicalcommunication. With recent advancements in artificial intelligence, there is growing potential to develop persuasive systems that automatically generate persuasive images tailored to individuals. However, a significant bottleneck in this area is the lack of comprehensivedatasets that connect the persuasiveness of images with the personal information about those who evaluated the images. To address this gap and facilitate technological advancements in personalized visual persuasion, we release the Personalized Visual Persuasion (PVP) dataset, comprising 28,454 persuasive images across 596 messages and 9 persuasion strategies. Importantly, the PVP dataset provides persuasiveness scores of images evaluated by 2,521 human annotators, along with their demographic and psychological characteristics (personality traits and values). We demonstrate the utility of our dataset by developing a persuasive image generator and an automated evaluator, and establish benchmark baselines. Our experiments reveal that incorporating psychological characteristics enhances the generation and evaluation of persuasive images, providing valuable insights for personalized visual persuasion.</abstract>
<identifier type="citekey">kim-etal-2025-pvp</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.942</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.942/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>19209</start>
<end>19237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PVP: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings
%A Kim, Junseo
%A Han, Jongwook
%A Choi, Dongmin
%A Yoon, Jongwook
%A Lee, Eun-Ju
%A Jo, Yohan
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F kim-etal-2025-pvp
%X Visual persuasion, which uses visual elements to influence cognition and behaviors, is crucial in fields such as advertising and politicalcommunication. With recent advancements in artificial intelligence, there is growing potential to develop persuasive systems that automatically generate persuasive images tailored to individuals. However, a significant bottleneck in this area is the lack of comprehensivedatasets that connect the persuasiveness of images with the personal information about those who evaluated the images. To address this gap and facilitate technological advancements in personalized visual persuasion, we release the Personalized Visual Persuasion (PVP) dataset, comprising 28,454 persuasive images across 596 messages and 9 persuasion strategies. Importantly, the PVP dataset provides persuasiveness scores of images evaluated by 2,521 human annotators, along with their demographic and psychological characteristics (personality traits and values). We demonstrate the utility of our dataset by developing a persuasive image generator and an automated evaluator, and establish benchmark baselines. Our experiments reveal that incorporating psychological characteristics enhances the generation and evaluation of persuasive images, providing valuable insights for personalized visual persuasion.
%R 10.18653/v1/2025.acl-long.942
%U https://aclanthology.org/2025.acl-long.942/
%U https://doi.org/10.18653/v1/2025.acl-long.942
%P 19209-19237
Markdown (Informal)
[PVP: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings](https://aclanthology.org/2025.acl-long.942/) (Kim et al., ACL 2025)
ACL
- Junseo Kim, Jongwook Han, Dongmin Choi, Jongwook Yoon, Eun-Ju Lee, and Yohan Jo. 2025. PVP: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 19209–19237, Vienna, Austria. Association for Computational Linguistics.