@inproceedings{zhu-etal-2025-zipa,
title = "{ZIPA}: A family of efficient models for multilingual phone recognition",
author = "Zhu, Jian and
Samir, Farhan and
Chodroff, Eleanor and
Mortensen, David R.",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.961/",
doi = "10.18653/v1/2025.acl-long.961",
pages = "19568--19585",
ISBN = "979-8-89176-251-0",
abstract = "We present ZIPA, a family of efficient speech models that advances the state-of-the-art performance of crosslinguistic phone recognition. We first curated IPA PACK++, a large-scale multilingual speech corpus with 17,000+ hours of normalized phone transcriptions and a novel evaluation set capturing unseen languages and sociophonetic variation. ZIPA, including transducer (ZIPA-T) and CTC-based (ZIPA-CR) variants, leverages the efficient Zipformer backbones and outperforms existing phone recognition systems with much fewer parameters. Further scaling via noisy student training on 11,000+ hours of pseudo-labeled multilingual data yields further improvement. While ZIPA achieves strong performance on benchmarks, error analysis reveals persistent limitations in modeling sociophonetic diversity, underscoring challenges for future research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2025-zipa">
<titleInfo>
<title>ZIPA: A family of efficient models for multilingual phone recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farhan</namePart>
<namePart type="family">Samir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleanor</namePart>
<namePart type="family">Chodroff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Mortensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>We present ZIPA, a family of efficient speech models that advances the state-of-the-art performance of crosslinguistic phone recognition. We first curated IPA PACK++, a large-scale multilingual speech corpus with 17,000+ hours of normalized phone transcriptions and a novel evaluation set capturing unseen languages and sociophonetic variation. ZIPA, including transducer (ZIPA-T) and CTC-based (ZIPA-CR) variants, leverages the efficient Zipformer backbones and outperforms existing phone recognition systems with much fewer parameters. Further scaling via noisy student training on 11,000+ hours of pseudo-labeled multilingual data yields further improvement. While ZIPA achieves strong performance on benchmarks, error analysis reveals persistent limitations in modeling sociophonetic diversity, underscoring challenges for future research.</abstract>
<identifier type="citekey">zhu-etal-2025-zipa</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.961</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.961/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>19568</start>
<end>19585</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ZIPA: A family of efficient models for multilingual phone recognition
%A Zhu, Jian
%A Samir, Farhan
%A Chodroff, Eleanor
%A Mortensen, David R.
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F zhu-etal-2025-zipa
%X We present ZIPA, a family of efficient speech models that advances the state-of-the-art performance of crosslinguistic phone recognition. We first curated IPA PACK++, a large-scale multilingual speech corpus with 17,000+ hours of normalized phone transcriptions and a novel evaluation set capturing unseen languages and sociophonetic variation. ZIPA, including transducer (ZIPA-T) and CTC-based (ZIPA-CR) variants, leverages the efficient Zipformer backbones and outperforms existing phone recognition systems with much fewer parameters. Further scaling via noisy student training on 11,000+ hours of pseudo-labeled multilingual data yields further improvement. While ZIPA achieves strong performance on benchmarks, error analysis reveals persistent limitations in modeling sociophonetic diversity, underscoring challenges for future research.
%R 10.18653/v1/2025.acl-long.961
%U https://aclanthology.org/2025.acl-long.961/
%U https://doi.org/10.18653/v1/2025.acl-long.961
%P 19568-19585
Markdown (Informal)
[ZIPA: A family of efficient models for multilingual phone recognition](https://aclanthology.org/2025.acl-long.961/) (Zhu et al., ACL 2025)
ACL