@inproceedings{miletic-schulte-im-walde-2025-modeling,
title = "Modeling the Evolution of {E}nglish Noun Compounds with Feature-Rich Diachronic Compositionality Prediction",
author = "Mileti{\'c}, Filip and
Schulte im Walde, Sabine",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.984/",
doi = "10.18653/v1/2025.acl-long.984",
pages = "20071--20092",
ISBN = "979-8-89176-251-0",
abstract = "We analyze the evolution of English noun compounds, which we represent as vectors of time-specific values. We implement a wide array of methods to create a rich set of features, using them to classify compounds for present-day compositionality and to assess the informativeness of the corresponding linguistic patterns. Our best results use BERT {--} reflecting the similarity of compounds and sentence contexts {--} and we further capture relevant and complementary information across approaches. Leveraging these feature differences, we find that the development of low-compositional meanings is reflected by a parallel drop in compositionality and sustained semantic change. The same distinction is echoed in transformer processing: compositionality estimates require far less contextualization than semantic change estimates."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="miletic-schulte-im-walde-2025-modeling">
<titleInfo>
<title>Modeling the Evolution of English Noun Compounds with Feature-Rich Diachronic Compositionality Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Miletić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>We analyze the evolution of English noun compounds, which we represent as vectors of time-specific values. We implement a wide array of methods to create a rich set of features, using them to classify compounds for present-day compositionality and to assess the informativeness of the corresponding linguistic patterns. Our best results use BERT – reflecting the similarity of compounds and sentence contexts – and we further capture relevant and complementary information across approaches. Leveraging these feature differences, we find that the development of low-compositional meanings is reflected by a parallel drop in compositionality and sustained semantic change. The same distinction is echoed in transformer processing: compositionality estimates require far less contextualization than semantic change estimates.</abstract>
<identifier type="citekey">miletic-schulte-im-walde-2025-modeling</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.984</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.984/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>20071</start>
<end>20092</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling the Evolution of English Noun Compounds with Feature-Rich Diachronic Compositionality Prediction
%A Miletić, Filip
%A Schulte im Walde, Sabine
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F miletic-schulte-im-walde-2025-modeling
%X We analyze the evolution of English noun compounds, which we represent as vectors of time-specific values. We implement a wide array of methods to create a rich set of features, using them to classify compounds for present-day compositionality and to assess the informativeness of the corresponding linguistic patterns. Our best results use BERT – reflecting the similarity of compounds and sentence contexts – and we further capture relevant and complementary information across approaches. Leveraging these feature differences, we find that the development of low-compositional meanings is reflected by a parallel drop in compositionality and sustained semantic change. The same distinction is echoed in transformer processing: compositionality estimates require far less contextualization than semantic change estimates.
%R 10.18653/v1/2025.acl-long.984
%U https://aclanthology.org/2025.acl-long.984/
%U https://doi.org/10.18653/v1/2025.acl-long.984
%P 20071-20092
Markdown (Informal)
[Modeling the Evolution of English Noun Compounds with Feature-Rich Diachronic Compositionality Prediction](https://aclanthology.org/2025.acl-long.984/) (Miletić & Schulte im Walde, ACL 2025)
ACL