@inproceedings{zheng-etal-2025-knowshiftqa,
title = "{K}now{S}hift{QA}: How Robust are {RAG} Systems when Textbook Knowledge Shifts in K-12 Education?",
author = "Zheng, Tianshi and
Li, Weihan and
Bai, Jiaxin and
Wang, Weiqi and
Song, Yangqiu",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-short.16/",
doi = "10.18653/v1/2025.acl-short.16",
pages = "183--195",
ISBN = "979-8-89176-252-7",
abstract = "Retrieval-Augmented Generation (RAG) systems show remarkable potential as question answering tools in the K-12 Education domain, where knowledge is typically queried within the restricted scope of authoritative textbooks. However, discrepancies between these textbooks and the parametric knowledge inherent in Large Language Models (LLMs) can undermine the effectiveness of RAG systems. To systematically investigate RAG system robustness against such knowledge discrepancies, we introduce KnowShiftQA. This novel question answering dataset simulates these discrepancies by applying deliberate hypothetical knowledge updates to both answers and source documents, reflecting how textbook knowledge can shift. KnowShiftQA comprises 3,005 questions across five subjects, designed with a comprehensive question typology focusing on context utilization and knowledge integration. Our extensive experiments on retrieval and question answering performance reveal that most RAG systems suffer a substantial performance drop when faced with these knowledge discrepancies. Furthermore, questions requiring the integration of contextual (textbook) knowledge with parametric (LLM) knowledge pose a significant challenge to current LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2025-knowshiftqa">
<titleInfo>
<title>KnowShiftQA: How Robust are RAG Systems when Textbook Knowledge Shifts in K-12 Education?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tianshi</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weihan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiqi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-252-7</identifier>
</relatedItem>
<abstract>Retrieval-Augmented Generation (RAG) systems show remarkable potential as question answering tools in the K-12 Education domain, where knowledge is typically queried within the restricted scope of authoritative textbooks. However, discrepancies between these textbooks and the parametric knowledge inherent in Large Language Models (LLMs) can undermine the effectiveness of RAG systems. To systematically investigate RAG system robustness against such knowledge discrepancies, we introduce KnowShiftQA. This novel question answering dataset simulates these discrepancies by applying deliberate hypothetical knowledge updates to both answers and source documents, reflecting how textbook knowledge can shift. KnowShiftQA comprises 3,005 questions across five subjects, designed with a comprehensive question typology focusing on context utilization and knowledge integration. Our extensive experiments on retrieval and question answering performance reveal that most RAG systems suffer a substantial performance drop when faced with these knowledge discrepancies. Furthermore, questions requiring the integration of contextual (textbook) knowledge with parametric (LLM) knowledge pose a significant challenge to current LLMs.</abstract>
<identifier type="citekey">zheng-etal-2025-knowshiftqa</identifier>
<identifier type="doi">10.18653/v1/2025.acl-short.16</identifier>
<location>
<url>https://aclanthology.org/2025.acl-short.16/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>183</start>
<end>195</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KnowShiftQA: How Robust are RAG Systems when Textbook Knowledge Shifts in K-12 Education?
%A Zheng, Tianshi
%A Li, Weihan
%A Bai, Jiaxin
%A Wang, Weiqi
%A Song, Yangqiu
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-252-7
%F zheng-etal-2025-knowshiftqa
%X Retrieval-Augmented Generation (RAG) systems show remarkable potential as question answering tools in the K-12 Education domain, where knowledge is typically queried within the restricted scope of authoritative textbooks. However, discrepancies between these textbooks and the parametric knowledge inherent in Large Language Models (LLMs) can undermine the effectiveness of RAG systems. To systematically investigate RAG system robustness against such knowledge discrepancies, we introduce KnowShiftQA. This novel question answering dataset simulates these discrepancies by applying deliberate hypothetical knowledge updates to both answers and source documents, reflecting how textbook knowledge can shift. KnowShiftQA comprises 3,005 questions across five subjects, designed with a comprehensive question typology focusing on context utilization and knowledge integration. Our extensive experiments on retrieval and question answering performance reveal that most RAG systems suffer a substantial performance drop when faced with these knowledge discrepancies. Furthermore, questions requiring the integration of contextual (textbook) knowledge with parametric (LLM) knowledge pose a significant challenge to current LLMs.
%R 10.18653/v1/2025.acl-short.16
%U https://aclanthology.org/2025.acl-short.16/
%U https://doi.org/10.18653/v1/2025.acl-short.16
%P 183-195
Markdown (Informal)
[KnowShiftQA: How Robust are RAG Systems when Textbook Knowledge Shifts in K-12 Education?](https://aclanthology.org/2025.acl-short.16/) (Zheng et al., ACL 2025)
ACL