@inproceedings{bunzeck-zarriess-2025-subword,
title = "Subword models struggle with word learning, but surprisal hides it",
author = "Bunzeck, Bastian and
Zarrie{\ss}, Sina",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-short.24/",
doi = "10.18653/v1/2025.acl-short.24",
pages = "286--300",
ISBN = "979-8-89176-252-7",
abstract = "We study word learning in subword and character language models with the psycholinguistic lexical decision task. While subword LMs struggle to discern words and non-words with high accuracy, character LMs solve this task easily and consistently. Only when supplied with further contexts do subword LMs perform similarly to character models. Additionally, when looking at word-level and syntactic learning trajectories, we find that both processes are separable in character LMs. Word learning happens before syntactic learning, whereas both occur simultaneously in subword LMs. This raises questions about the adequacy of subword LMs for modeling language acquisition and positions character LMs as a viable alternative to study processes below the syntactic level."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bunzeck-zarriess-2025-subword">
<titleInfo>
<title>Subword models struggle with word learning, but surprisal hides it</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bastian</namePart>
<namePart type="family">Bunzeck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-252-7</identifier>
</relatedItem>
<abstract>We study word learning in subword and character language models with the psycholinguistic lexical decision task. While subword LMs struggle to discern words and non-words with high accuracy, character LMs solve this task easily and consistently. Only when supplied with further contexts do subword LMs perform similarly to character models. Additionally, when looking at word-level and syntactic learning trajectories, we find that both processes are separable in character LMs. Word learning happens before syntactic learning, whereas both occur simultaneously in subword LMs. This raises questions about the adequacy of subword LMs for modeling language acquisition and positions character LMs as a viable alternative to study processes below the syntactic level.</abstract>
<identifier type="citekey">bunzeck-zarriess-2025-subword</identifier>
<identifier type="doi">10.18653/v1/2025.acl-short.24</identifier>
<location>
<url>https://aclanthology.org/2025.acl-short.24/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>286</start>
<end>300</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Subword models struggle with word learning, but surprisal hides it
%A Bunzeck, Bastian
%A Zarrieß, Sina
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-252-7
%F bunzeck-zarriess-2025-subword
%X We study word learning in subword and character language models with the psycholinguistic lexical decision task. While subword LMs struggle to discern words and non-words with high accuracy, character LMs solve this task easily and consistently. Only when supplied with further contexts do subword LMs perform similarly to character models. Additionally, when looking at word-level and syntactic learning trajectories, we find that both processes are separable in character LMs. Word learning happens before syntactic learning, whereas both occur simultaneously in subword LMs. This raises questions about the adequacy of subword LMs for modeling language acquisition and positions character LMs as a viable alternative to study processes below the syntactic level.
%R 10.18653/v1/2025.acl-short.24
%U https://aclanthology.org/2025.acl-short.24/
%U https://doi.org/10.18653/v1/2025.acl-short.24
%P 286-300
Markdown (Informal)
[Subword models struggle with word learning, but surprisal hides it](https://aclanthology.org/2025.acl-short.24/) (Bunzeck & Zarrieß, ACL 2025)
ACL