@inproceedings{bagherifard-etal-2025-genknowsub,
title = "{G}en{K}now{S}ub: Improving Modularity and Reusability of {LLM}s through General Knowledge Subtraction",
author = "Bagherifard, Mohammadtaha and
Rajabi, Sahar and
Edalat, Ali and
Yaghoobzadeh, Yadollah",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-short.54/",
doi = "10.18653/v1/2025.acl-short.54",
pages = "685--694",
ISBN = "979-8-89176-252-7",
abstract = "Large language models (LLMs) often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information. We call this approach general knowledge subtraction or GenKnowSub. Leveraging the refined task-specific modules and the Arrow routing algorithm, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 reveal how GenKnowSub generalizes to a weaker LLM."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bagherifard-etal-2025-genknowsub">
<titleInfo>
<title>GenKnowSub: Improving Modularity and Reusability of LLMs through General Knowledge Subtraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammadtaha</namePart>
<namePart type="family">Bagherifard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sahar</namePart>
<namePart type="family">Rajabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Edalat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadollah</namePart>
<namePart type="family">Yaghoobzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-252-7</identifier>
</relatedItem>
<abstract>Large language models (LLMs) often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information. We call this approach general knowledge subtraction or GenKnowSub. Leveraging the refined task-specific modules and the Arrow routing algorithm, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 reveal how GenKnowSub generalizes to a weaker LLM.</abstract>
<identifier type="citekey">bagherifard-etal-2025-genknowsub</identifier>
<identifier type="doi">10.18653/v1/2025.acl-short.54</identifier>
<location>
<url>https://aclanthology.org/2025.acl-short.54/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>685</start>
<end>694</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GenKnowSub: Improving Modularity and Reusability of LLMs through General Knowledge Subtraction
%A Bagherifard, Mohammadtaha
%A Rajabi, Sahar
%A Edalat, Ali
%A Yaghoobzadeh, Yadollah
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-252-7
%F bagherifard-etal-2025-genknowsub
%X Large language models (LLMs) often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information. We call this approach general knowledge subtraction or GenKnowSub. Leveraging the refined task-specific modules and the Arrow routing algorithm, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 reveal how GenKnowSub generalizes to a weaker LLM.
%R 10.18653/v1/2025.acl-short.54
%U https://aclanthology.org/2025.acl-short.54/
%U https://doi.org/10.18653/v1/2025.acl-short.54
%P 685-694
Markdown (Informal)
[GenKnowSub: Improving Modularity and Reusability of LLMs through General Knowledge Subtraction](https://aclanthology.org/2025.acl-short.54/) (Bagherifard et al., ACL 2025)
ACL