@inproceedings{kandra-etal-2025-llms,
title = "{LLM}s syntactically adapt their language use to their conversational partner",
author = "Kandra, Florian and
Demberg, Vera and
Koller, Alexander",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-short.68/",
doi = "10.18653/v1/2025.acl-short.68",
pages = "873--886",
ISBN = "979-8-89176-252-7",
abstract = "It has been frequently observed that human speakers align their language use with each other during conversations. In this paper, we study empirically whether large language models (LLMs) exhibit the same behavior of conversational adaptation.We construct a corpus of conversations between LLMs and find that two LLM agents end up making more similar syntactic choices as conversations go on, confirming that modern LLMs adapt their language use to their conversational partners in at least a rudimentary way."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kandra-etal-2025-llms">
<titleInfo>
<title>LLMs syntactically adapt their language use to their conversational partner</title>
</titleInfo>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Kandra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-252-7</identifier>
</relatedItem>
<abstract>It has been frequently observed that human speakers align their language use with each other during conversations. In this paper, we study empirically whether large language models (LLMs) exhibit the same behavior of conversational adaptation.We construct a corpus of conversations between LLMs and find that two LLM agents end up making more similar syntactic choices as conversations go on, confirming that modern LLMs adapt their language use to their conversational partners in at least a rudimentary way.</abstract>
<identifier type="citekey">kandra-etal-2025-llms</identifier>
<identifier type="doi">10.18653/v1/2025.acl-short.68</identifier>
<location>
<url>https://aclanthology.org/2025.acl-short.68/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>873</start>
<end>886</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLMs syntactically adapt their language use to their conversational partner
%A Kandra, Florian
%A Demberg, Vera
%A Koller, Alexander
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-252-7
%F kandra-etal-2025-llms
%X It has been frequently observed that human speakers align their language use with each other during conversations. In this paper, we study empirically whether large language models (LLMs) exhibit the same behavior of conversational adaptation.We construct a corpus of conversations between LLMs and find that two LLM agents end up making more similar syntactic choices as conversations go on, confirming that modern LLMs adapt their language use to their conversational partners in at least a rudimentary way.
%R 10.18653/v1/2025.acl-short.68
%U https://aclanthology.org/2025.acl-short.68/
%U https://doi.org/10.18653/v1/2025.acl-short.68
%P 873-886
Markdown (Informal)
[LLMs syntactically adapt their language use to their conversational partner](https://aclanthology.org/2025.acl-short.68/) (Kandra et al., ACL 2025)
ACL