@inproceedings{stern-etal-2025-citations,
title = "From Citations to Criticality: Predicting Legal Decision Influence in the Multilingual {S}wiss Jurisprudence",
author = {Stern, Ronja and
Kawamura, Ken and
St{\"u}rmer, Matthias and
Chalkidis, Ilias and
Niklaus, Joel},
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-short.70/",
doi = "10.18653/v1/2025.acl-short.70",
pages = "897--905",
ISBN = "979-8-89176-252-7",
abstract = "Many court systems are overwhelmed all over the world, leading to huge backlogs of pending cases. Effective triage systems, like those in emergency rooms, could ensure proper prioritization of open cases, optimizing time and resource allocation in the court system. In this work, we introduce the Criticality Prediction dataset, a novel resource for evaluating case prioritization. Our dataset features a two-tier labeling system: (1) the binary LD-Label, identifying cases published as Leading Decisions (LD), and (2) the more granular Citation-Label, ranking cases by their citation frequency and recency, allowing for a more nuanced evaluation. Unlike existing approaches that rely on resource-intensive manual annotations, we algorithmically derive labels leading to a much larger dataset than otherwise possible. We evaluate several multilingual models, including both smaller fine-tuned models and large language models in a zero-shot setting. Our results show that the fine-tuned models consistently outperform their larger counterparts, thanks to our large training set. Our results highlight that for highly domain-specific tasks like ours, large training sets are still valuable."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stern-etal-2025-citations">
<titleInfo>
<title>From Citations to Criticality: Predicting Legal Decision Influence in the Multilingual Swiss Jurisprudence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Stern</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ken</namePart>
<namePart type="family">Kawamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Stürmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Niklaus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-252-7</identifier>
</relatedItem>
<abstract>Many court systems are overwhelmed all over the world, leading to huge backlogs of pending cases. Effective triage systems, like those in emergency rooms, could ensure proper prioritization of open cases, optimizing time and resource allocation in the court system. In this work, we introduce the Criticality Prediction dataset, a novel resource for evaluating case prioritization. Our dataset features a two-tier labeling system: (1) the binary LD-Label, identifying cases published as Leading Decisions (LD), and (2) the more granular Citation-Label, ranking cases by their citation frequency and recency, allowing for a more nuanced evaluation. Unlike existing approaches that rely on resource-intensive manual annotations, we algorithmically derive labels leading to a much larger dataset than otherwise possible. We evaluate several multilingual models, including both smaller fine-tuned models and large language models in a zero-shot setting. Our results show that the fine-tuned models consistently outperform their larger counterparts, thanks to our large training set. Our results highlight that for highly domain-specific tasks like ours, large training sets are still valuable.</abstract>
<identifier type="citekey">stern-etal-2025-citations</identifier>
<identifier type="doi">10.18653/v1/2025.acl-short.70</identifier>
<location>
<url>https://aclanthology.org/2025.acl-short.70/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>897</start>
<end>905</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Citations to Criticality: Predicting Legal Decision Influence in the Multilingual Swiss Jurisprudence
%A Stern, Ronja
%A Kawamura, Ken
%A Stürmer, Matthias
%A Chalkidis, Ilias
%A Niklaus, Joel
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-252-7
%F stern-etal-2025-citations
%X Many court systems are overwhelmed all over the world, leading to huge backlogs of pending cases. Effective triage systems, like those in emergency rooms, could ensure proper prioritization of open cases, optimizing time and resource allocation in the court system. In this work, we introduce the Criticality Prediction dataset, a novel resource for evaluating case prioritization. Our dataset features a two-tier labeling system: (1) the binary LD-Label, identifying cases published as Leading Decisions (LD), and (2) the more granular Citation-Label, ranking cases by their citation frequency and recency, allowing for a more nuanced evaluation. Unlike existing approaches that rely on resource-intensive manual annotations, we algorithmically derive labels leading to a much larger dataset than otherwise possible. We evaluate several multilingual models, including both smaller fine-tuned models and large language models in a zero-shot setting. Our results show that the fine-tuned models consistently outperform their larger counterparts, thanks to our large training set. Our results highlight that for highly domain-specific tasks like ours, large training sets are still valuable.
%R 10.18653/v1/2025.acl-short.70
%U https://aclanthology.org/2025.acl-short.70/
%U https://doi.org/10.18653/v1/2025.acl-short.70
%P 897-905
Markdown (Informal)
[From Citations to Criticality: Predicting Legal Decision Influence in the Multilingual Swiss Jurisprudence](https://aclanthology.org/2025.acl-short.70/) (Stern et al., ACL 2025)
ACL