@inproceedings{orten-etal-2025-neuron,
title = "Neuron-Level Language Tag Injection Improves Zero-Shot Translation Performance",
author = "Orten, Jay and
Shurtz, Ammon and
Fulda, Nancy and
Richardson, Stephen D.",
editor = "Zhao, Jin and
Wang, Mingyang and
Liu, Zhu",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-srw.13/",
doi = "10.18653/v1/2025.acl-srw.13",
pages = "203--212",
ISBN = "979-8-89176-254-1",
abstract = "Language tagging, a method whereby source and target inputs are prefixed with a unique language token, has become the de facto standard for conditioning Multilingual Neural Machine Translation (MNMT) models on specific language directions. This conditioning can manifest effective zero-shot translation abilities in MT models at scale for many languages. Expanding on previous work, we propose a novel method of language tagging for MNMT, injection, in which the embedded representation of a language token is concatenated to the input of every linear layer. We explore a variety of different tagging methods, with and without injection, showing that injection improves zero-shot translation performance with up to a 2+ BLEU score point gain for certain language directions in our dataset."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="orten-etal-2025-neuron">
<titleInfo>
<title>Neuron-Level Language Tag Injection Improves Zero-Shot Translation Performance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jay</namePart>
<namePart type="family">Orten</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ammon</namePart>
<namePart type="family">Shurtz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Fulda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Richardson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingyang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-254-1</identifier>
</relatedItem>
<abstract>Language tagging, a method whereby source and target inputs are prefixed with a unique language token, has become the de facto standard for conditioning Multilingual Neural Machine Translation (MNMT) models on specific language directions. This conditioning can manifest effective zero-shot translation abilities in MT models at scale for many languages. Expanding on previous work, we propose a novel method of language tagging for MNMT, injection, in which the embedded representation of a language token is concatenated to the input of every linear layer. We explore a variety of different tagging methods, with and without injection, showing that injection improves zero-shot translation performance with up to a 2+ BLEU score point gain for certain language directions in our dataset.</abstract>
<identifier type="citekey">orten-etal-2025-neuron</identifier>
<identifier type="doi">10.18653/v1/2025.acl-srw.13</identifier>
<location>
<url>https://aclanthology.org/2025.acl-srw.13/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>203</start>
<end>212</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neuron-Level Language Tag Injection Improves Zero-Shot Translation Performance
%A Orten, Jay
%A Shurtz, Ammon
%A Fulda, Nancy
%A Richardson, Stephen D.
%Y Zhao, Jin
%Y Wang, Mingyang
%Y Liu, Zhu
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-254-1
%F orten-etal-2025-neuron
%X Language tagging, a method whereby source and target inputs are prefixed with a unique language token, has become the de facto standard for conditioning Multilingual Neural Machine Translation (MNMT) models on specific language directions. This conditioning can manifest effective zero-shot translation abilities in MT models at scale for many languages. Expanding on previous work, we propose a novel method of language tagging for MNMT, injection, in which the embedded representation of a language token is concatenated to the input of every linear layer. We explore a variety of different tagging methods, with and without injection, showing that injection improves zero-shot translation performance with up to a 2+ BLEU score point gain for certain language directions in our dataset.
%R 10.18653/v1/2025.acl-srw.13
%U https://aclanthology.org/2025.acl-srw.13/
%U https://doi.org/10.18653/v1/2025.acl-srw.13
%P 203-212
Markdown (Informal)
[Neuron-Level Language Tag Injection Improves Zero-Shot Translation Performance](https://aclanthology.org/2025.acl-srw.13/) (Orten et al., ACL 2025)
ACL