@inproceedings{chirkin-etal-2025-ruscontext,
title = "{R}us{C}on{T}ext Benchmark: A {R}ussian Language Evaluation Benchmark for Understanding Context",
author = "Chirkin, Andrey and
Kuznetsova, Svetlana and
Volina, Maria and
Dengina, Anna",
editor = "Zhao, Jin and
Wang, Mingyang and
Liu, Zhu",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-srw.91/",
doi = "10.18653/v1/2025.acl-srw.91",
pages = "1158--1170",
ISBN = "979-8-89176-254-1",
abstract = "This paper represents an implementation of an approach rather similar to that of (Zhu et al., 2024), adapted for the Russian-language data. We introduce the RusConText Benchmark for evaluating short-context understanding in Russian, comprising four distinct yet interrelated tasks: coreference resolution, discourse understanding, idiom interpretation and ellipsis resolution. Each task targets a specific aspect of linguistic processing, challenging a large language model to recover omitted information, resolve referential dependencies, interpret idioms and discourse. The RusConText Benchmark is an additional resource beyond standard benchmarks, designed to assess model performance from a specific perspective. In addition, we present the results of scoring 4 models on our benchmark."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chirkin-etal-2025-ruscontext">
<titleInfo>
<title>RusConText Benchmark: A Russian Language Evaluation Benchmark for Understanding Context</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrey</namePart>
<namePart type="family">Chirkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Kuznetsova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Volina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Dengina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingyang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-254-1</identifier>
</relatedItem>
<abstract>This paper represents an implementation of an approach rather similar to that of (Zhu et al., 2024), adapted for the Russian-language data. We introduce the RusConText Benchmark for evaluating short-context understanding in Russian, comprising four distinct yet interrelated tasks: coreference resolution, discourse understanding, idiom interpretation and ellipsis resolution. Each task targets a specific aspect of linguistic processing, challenging a large language model to recover omitted information, resolve referential dependencies, interpret idioms and discourse. The RusConText Benchmark is an additional resource beyond standard benchmarks, designed to assess model performance from a specific perspective. In addition, we present the results of scoring 4 models on our benchmark.</abstract>
<identifier type="citekey">chirkin-etal-2025-ruscontext</identifier>
<identifier type="doi">10.18653/v1/2025.acl-srw.91</identifier>
<location>
<url>https://aclanthology.org/2025.acl-srw.91/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1158</start>
<end>1170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RusConText Benchmark: A Russian Language Evaluation Benchmark for Understanding Context
%A Chirkin, Andrey
%A Kuznetsova, Svetlana
%A Volina, Maria
%A Dengina, Anna
%Y Zhao, Jin
%Y Wang, Mingyang
%Y Liu, Zhu
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-254-1
%F chirkin-etal-2025-ruscontext
%X This paper represents an implementation of an approach rather similar to that of (Zhu et al., 2024), adapted for the Russian-language data. We introduce the RusConText Benchmark for evaluating short-context understanding in Russian, comprising four distinct yet interrelated tasks: coreference resolution, discourse understanding, idiom interpretation and ellipsis resolution. Each task targets a specific aspect of linguistic processing, challenging a large language model to recover omitted information, resolve referential dependencies, interpret idioms and discourse. The RusConText Benchmark is an additional resource beyond standard benchmarks, designed to assess model performance from a specific perspective. In addition, we present the results of scoring 4 models on our benchmark.
%R 10.18653/v1/2025.acl-srw.91
%U https://aclanthology.org/2025.acl-srw.91/
%U https://doi.org/10.18653/v1/2025.acl-srw.91
%P 1158-1170
Markdown (Informal)
[RusConText Benchmark: A Russian Language Evaluation Benchmark for Understanding Context](https://aclanthology.org/2025.acl-srw.91/) (Chirkin et al., ACL 2025)
ACL