@inproceedings{kumar-nolbaria-2025-bridging,
title = "Bridging the Data Gap in Financial Sentiment: {LLM}-Driven Augmentation",
author = "Kumar, Rohit and
Nolbaria, Chandan",
editor = "Zhao, Jin and
Wang, Mingyang and
Liu, Zhu",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-srw.98/",
doi = "10.18653/v1/2025.acl-srw.98",
pages = "1246--1254",
ISBN = "979-8-89176-254-1",
abstract = "Static and outdated datasets hinder the accuracy of Financial Sentiment Analysis (FSA) in capturing rapidly evolving market sentiment. We tackle this by proposing a novel data augmentation technique using Retrieval Augmented Generation (RAG). Our method leverages a generative LLM to infuse established benchmarks with up-to-date contextual information from contemporary financial news. This RAG-based augmentation significantly modernizes the data{'}s alignment with current financial language. Furthermore, a robust BERT-BiGRU judge model verifies that the sentiment of the original annotations is faithfully preserved, ensuring the generation of high-quality, temporally relevant, and sentiment-consistent data suitable for advancing FSA model development."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-nolbaria-2025-bridging">
<titleInfo>
<title>Bridging the Data Gap in Financial Sentiment: LLM-Driven Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rohit</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chandan</namePart>
<namePart type="family">Nolbaria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingyang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-254-1</identifier>
</relatedItem>
<abstract>Static and outdated datasets hinder the accuracy of Financial Sentiment Analysis (FSA) in capturing rapidly evolving market sentiment. We tackle this by proposing a novel data augmentation technique using Retrieval Augmented Generation (RAG). Our method leverages a generative LLM to infuse established benchmarks with up-to-date contextual information from contemporary financial news. This RAG-based augmentation significantly modernizes the data’s alignment with current financial language. Furthermore, a robust BERT-BiGRU judge model verifies that the sentiment of the original annotations is faithfully preserved, ensuring the generation of high-quality, temporally relevant, and sentiment-consistent data suitable for advancing FSA model development.</abstract>
<identifier type="citekey">kumar-nolbaria-2025-bridging</identifier>
<identifier type="doi">10.18653/v1/2025.acl-srw.98</identifier>
<location>
<url>https://aclanthology.org/2025.acl-srw.98/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1246</start>
<end>1254</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bridging the Data Gap in Financial Sentiment: LLM-Driven Augmentation
%A Kumar, Rohit
%A Nolbaria, Chandan
%Y Zhao, Jin
%Y Wang, Mingyang
%Y Liu, Zhu
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-254-1
%F kumar-nolbaria-2025-bridging
%X Static and outdated datasets hinder the accuracy of Financial Sentiment Analysis (FSA) in capturing rapidly evolving market sentiment. We tackle this by proposing a novel data augmentation technique using Retrieval Augmented Generation (RAG). Our method leverages a generative LLM to infuse established benchmarks with up-to-date contextual information from contemporary financial news. This RAG-based augmentation significantly modernizes the data’s alignment with current financial language. Furthermore, a robust BERT-BiGRU judge model verifies that the sentiment of the original annotations is faithfully preserved, ensuring the generation of high-quality, temporally relevant, and sentiment-consistent data suitable for advancing FSA model development.
%R 10.18653/v1/2025.acl-srw.98
%U https://aclanthology.org/2025.acl-srw.98/
%U https://doi.org/10.18653/v1/2025.acl-srw.98
%P 1246-1254
Markdown (Informal)
[Bridging the Data Gap in Financial Sentiment: LLM-Driven Augmentation](https://aclanthology.org/2025.acl-srw.98/) (Kumar & Nolbaria, ACL 2025)
ACL