@inproceedings{adegbehingbe-etal-2025-beyond,
title = "Beyond Generalization :Evaluating Multilingual {LLM}s for {Y}or{\`u}b{\'a} Animal Health Translation",
author = "Adegbehingbe, Godwin and
Soronnadi, Anthony and
Adebara, Ife and
Adekanmbi, Olubayo",
editor = "Lignos, Constantine and
Abdulmumin, Idris and
Adelani, David",
booktitle = "Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.africanlp-1.28/",
doi = "10.18653/v1/2025.africanlp-1.28",
pages = "192--194",
ISBN = "979-8-89176-257-2",
abstract = "Machine translation (MT) has advanced significantly for high-resource languages, yet specialized domain translation remains a challenge for low-resource languages. This study evaluates the ability of state-of-the-art multilingual models to translate animal health reports from English to Yor{\`u}b{\'a}, a crucial task for veterinary communication in underserved regions. We curated a dataset of 1,468 parallel sentences and compared multiple MT models in zero-shot and fine-tuned settings. Our findings indicate substantial limitations in their ability to generalize to domain-specific translation, with common errors arising from vocabulary mismatch, training data scarcity, and morphological complexity. Fine-tuning improves performance, particularly for the NLLB 3.3B model, but challenges remain in preserving technical accuracy. These results underscore the need for more targeted approaches to multilingual and culturally aware LLMs for African languages."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="adegbehingbe-etal-2025-beyond">
<titleInfo>
<title>Beyond Generalization :Evaluating Multilingual LLMs for Yorùbá Animal Health Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Godwin</namePart>
<namePart type="family">Adegbehingbe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Soronnadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ife</namePart>
<namePart type="family">Adebara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olubayo</namePart>
<namePart type="family">Adekanmbi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Constantine</namePart>
<namePart type="family">Lignos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Idris</namePart>
<namePart type="family">Abdulmumin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Adelani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-257-2</identifier>
</relatedItem>
<abstract>Machine translation (MT) has advanced significantly for high-resource languages, yet specialized domain translation remains a challenge for low-resource languages. This study evaluates the ability of state-of-the-art multilingual models to translate animal health reports from English to Yorùbá, a crucial task for veterinary communication in underserved regions. We curated a dataset of 1,468 parallel sentences and compared multiple MT models in zero-shot and fine-tuned settings. Our findings indicate substantial limitations in their ability to generalize to domain-specific translation, with common errors arising from vocabulary mismatch, training data scarcity, and morphological complexity. Fine-tuning improves performance, particularly for the NLLB 3.3B model, but challenges remain in preserving technical accuracy. These results underscore the need for more targeted approaches to multilingual and culturally aware LLMs for African languages.</abstract>
<identifier type="citekey">adegbehingbe-etal-2025-beyond</identifier>
<identifier type="doi">10.18653/v1/2025.africanlp-1.28</identifier>
<location>
<url>https://aclanthology.org/2025.africanlp-1.28/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>192</start>
<end>194</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Generalization :Evaluating Multilingual LLMs for Yorùbá Animal Health Translation
%A Adegbehingbe, Godwin
%A Soronnadi, Anthony
%A Adebara, Ife
%A Adekanmbi, Olubayo
%Y Lignos, Constantine
%Y Abdulmumin, Idris
%Y Adelani, David
%S Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-257-2
%F adegbehingbe-etal-2025-beyond
%X Machine translation (MT) has advanced significantly for high-resource languages, yet specialized domain translation remains a challenge for low-resource languages. This study evaluates the ability of state-of-the-art multilingual models to translate animal health reports from English to Yorùbá, a crucial task for veterinary communication in underserved regions. We curated a dataset of 1,468 parallel sentences and compared multiple MT models in zero-shot and fine-tuned settings. Our findings indicate substantial limitations in their ability to generalize to domain-specific translation, with common errors arising from vocabulary mismatch, training data scarcity, and morphological complexity. Fine-tuning improves performance, particularly for the NLLB 3.3B model, but challenges remain in preserving technical accuracy. These results underscore the need for more targeted approaches to multilingual and culturally aware LLMs for African languages.
%R 10.18653/v1/2025.africanlp-1.28
%U https://aclanthology.org/2025.africanlp-1.28/
%U https://doi.org/10.18653/v1/2025.africanlp-1.28
%P 192-194
Markdown (Informal)
[Beyond Generalization :Evaluating Multilingual LLMs for Yorùbá Animal Health Translation](https://aclanthology.org/2025.africanlp-1.28/) (Adegbehingbe et al., AfricaNLP 2025)
ACL