@inproceedings{pandya-etal-2025-swahili,
title = "{S}wahili News Classification: Performance, Challenges, and Explainability Across {ML}, {DL}, and Transformers",
author = "Pandya, Manas and
Sharma, Avinash Kumar and
Shukla, Arpit",
editor = "Lignos, Constantine and
Abdulmumin, Idris and
Adelani, David",
booktitle = "Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.africanlp-1.30/",
doi = "10.18653/v1/2025.africanlp-1.30",
pages = "203--209",
ISBN = "979-8-89176-257-2",
abstract = "In this paper, we propose a comprehensive framework for the classification of Swahili news articles using a combination of classical machine learning techniques, deep neural networks, and transformer-based models. By balancing two diverse datasets sourced from Harvard Dataverse and Kaggle, our approach addresses the inherent challenges of imbalanced data in low-resource languages. Our experiments demonstrate the effectiveness of the proposed methodology and set the stage for further advances in Swahili natural language processing."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pandya-etal-2025-swahili">
<titleInfo>
<title>Swahili News Classification: Performance, Challenges, and Explainability Across ML, DL, and Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manas</namePart>
<namePart type="family">Pandya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avinash</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Shukla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Constantine</namePart>
<namePart type="family">Lignos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Idris</namePart>
<namePart type="family">Abdulmumin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Adelani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-257-2</identifier>
</relatedItem>
<abstract>In this paper, we propose a comprehensive framework for the classification of Swahili news articles using a combination of classical machine learning techniques, deep neural networks, and transformer-based models. By balancing two diverse datasets sourced from Harvard Dataverse and Kaggle, our approach addresses the inherent challenges of imbalanced data in low-resource languages. Our experiments demonstrate the effectiveness of the proposed methodology and set the stage for further advances in Swahili natural language processing.</abstract>
<identifier type="citekey">pandya-etal-2025-swahili</identifier>
<identifier type="doi">10.18653/v1/2025.africanlp-1.30</identifier>
<location>
<url>https://aclanthology.org/2025.africanlp-1.30/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>203</start>
<end>209</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Swahili News Classification: Performance, Challenges, and Explainability Across ML, DL, and Transformers
%A Pandya, Manas
%A Sharma, Avinash Kumar
%A Shukla, Arpit
%Y Lignos, Constantine
%Y Abdulmumin, Idris
%Y Adelani, David
%S Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-257-2
%F pandya-etal-2025-swahili
%X In this paper, we propose a comprehensive framework for the classification of Swahili news articles using a combination of classical machine learning techniques, deep neural networks, and transformer-based models. By balancing two diverse datasets sourced from Harvard Dataverse and Kaggle, our approach addresses the inherent challenges of imbalanced data in low-resource languages. Our experiments demonstrate the effectiveness of the proposed methodology and set the stage for further advances in Swahili natural language processing.
%R 10.18653/v1/2025.africanlp-1.30
%U https://aclanthology.org/2025.africanlp-1.30/
%U https://doi.org/10.18653/v1/2025.africanlp-1.30
%P 203-209
Markdown (Informal)
[Swahili News Classification: Performance, Challenges, and Explainability Across ML, DL, and Transformers](https://aclanthology.org/2025.africanlp-1.30/) (Pandya et al., AfricaNLP 2025)
ACL