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Abstract

This study examines input optimization for
enhanced efficiency in automated scoring
(AS) of reading assessments, which
typically involve lengthy passages and
complex scoring guides. We propose
optimizing input size using question-
specific summaries and simplified scoring
guides. Findings indicate that input
optimization via compression is achievable
while maintaining AS performance.

1 Introduction

Automated scoring (AS) has a rich history in
educational measurement (Lottridge et al., 2023),
dating back to the 1960s when the primary focus
was on scoring multiple-choice responses or
implementing machine-supported scoring based on
pattern matching or manual feature selection. The
rapid advances in natural language processing
(NLP), machine learning, and computational
power have led to significant developments in large
language models (LLMs). Integrating LLMs, such
as OpenAl’s GPT models or META’s Llama, into
AS expands the applicability and scalability of AS
in educational assessment.

However, applying LLMs to the AS of reading
assessments presents unique challenges in
processing long inputs, including extended reading
passages and complex scoring guides (SGs). Given
that the cost of using LLMs through APIs depends
on the number of input, cached, and output tokens
(OpenAl, 2025), extensively long prompts can lead
to inflated costs for each API call. Moreover,
previous study indicated that long prompts can
cause a “lost in the middle” effect, where LLMs
struggle to appropriately use the most relevant
context embedded within the extensive input (Liu
et al., 2023). This limitation persists, particularly
for smaller models operated locally.
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To address the challenge of processing long
inputs, we propose input optimization to improve
the scalability and efficiency of AS in international
large-scale assessments (ILSAs).

2 Background

Very long inputs can slow LLMs’ inference
processes and increase energy use due to the
increased the number of tokens that need to be
processed. Prior research showed that LLMs do not
robustly utilize information in long input contexts
and may ignore parts of the given context,
generating incorrect outputs (Liu et al., 2023).
Crucially, extended input lengths lead to a linear
increase in both computational costs and energy
demands (Poddar et al., 2025).

Text compression shrinks textual data while
preserving crucial information, improving storage
and computational efficiency, and enhancing the
performance of LLMs (Rahman et al., 2024; Wang
et al., 2024). Compression can be achieved through
either soft or hard prompts. Soft prompts are
continuous vectors, enabling LLMs to address long
and complex input by distilling critical information
into a smaller number of special tokens (Li et al.,
2024; Wang et al., 2024). Yet, soft prompts are less
interpretable by humans and are often highly
customized to specific tasks. Their reusability or
transferability across different tasks can be
constrained (Su et al., 2022).

In contrast, hard prompts comprise discrete
words and tokens, making them easily
understandable by humans. This readability and
transparency allow humans to review, debug, and
modify prompts by facilitating effective human-
machine interaction (Chang et al., 2024; Wen et al.,
2023). Hard prompts can be especially powerful
when prompts need human interpretation or are
integrated into a text-based interface (Wen et al.,
2023; Jiang et al., 2023). Zhang et al. (2024) found
that hard prompts yield superior performance for
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summarization compared to soft prompts in human
evaluations.

Despite the demonstrated usefulness of text
compression techniques, they have not been widely
integrated into AS for reading assessments in
ILSAs, such as the Progress in International
Reading Literacy Study (PIRLS). Optimizing long
input through compression in reading assessments
can contribute to improving AS scalability and
cost- and computational efficiency in ILSAs. This
paper examines how advances in hard prompt-
based input optimization can be integrated into AS
in PIRLS, which involves a substantial volume of
multilingual responses.

3 Method

3.1 Dataset

The PIRLS, administered every five years since
2001, assesses the reading comprehension skills of
fourth-grade students across 50-60 countries
worldwide. In PIRLS 2021, approximately 50% of
countries (27 countries) used computer-based
assessments. The  assessment  framework
categorizes reading comprehension into four
cognitive processes: focus on and retrieve;
straightforward inferences; interpret and integrate;
and evaluate and critique (Mullis & Martin, 2019).
For this study, we selected five one-point
constructed response (CR) items from the PRILS
2021 digital assessment (digital PIRLS). The
selected items represent three cognitive processes:
one from focus on and retrieve, two from
straightforward inferences, and two from interpret
and integrate.

These items are “trend” items, kept secure for
their reuse in future assessment cycles (Fishbein et
al., 2024). We provide general descriptions of these
items (Table 1) as this research is part of the
preparatory work for AS in PIRLS 2026, where
these items will be used. We selected four reading
passages with varying difficulty levels: easy
(passages B and D), medium (passage A), and
difficult (passage C).

Item  Passage Process n

1 A Focus on and retrieve 2687

2 B Straightforward 2951
inferences

3 A Straightforward 2643
inferences

4 C Interpret and integrate 2589

5 D Interpret and integrate 2452

Table 1: PIRLS trend items used in the study

The dataset included multilingual responses
from the 27 participating countries in digital PIRLS
2021, covering 29 languages. While approximately
50% of participating countries used computer-
based assessments in PIRLS 2021, the data still
contained on average, 2,664 multilingual responses
per item (see Appendix A). We used a randomly
selected 20% subset for each country given the
scope, computational and budgetary limitations.

3.2 PIRLS Scoring Template

We proposed a generalized PIRLS scoring
template for AS (see Appendix B), comprising four
key elements: (1) instruction, (2) reading passage,
(3) question, and (4) SG, as detailed in Table 2. We
used GPT-4.1 (i.e., gpt-4.1-2025-04-14) for our AS

Component  Content

Instruction Comprehensive guidance on AS

Reading A written text serving as the

passage stimulus

Question A question consisting of one or two
sentences

Scoring Rubric for scoring an item,

guide (SG) including descriptions and examples

Table 2: PIRLS scoring template components

implementation, applying parallel processing for
efficiency. This template used zero-shot chain-of-
thought (CoT), a technique that enhances LLM
performance through step-by-step reasoning
without requiring specific examples (Kojima et al.,
2022; Yuan et al., 2024). Zero-shot COT offers the
advantage of easy generalization to other items due
to its independence from specific examples.

Instruction: The instruction component offers
comprehensive guidance on translating student
responses, applying the SG, validating scores, and
constructing output.

Reading Passage: The second component, a
reading passage, could be presented as either the
original passage or a question-specific summary.
Original passages provide the complete



information as presented to students, whereas
summaries include question-relevant details while
preserving overall context.

Question: The third component, the item’s
question, was directly input into the scoring
template.

Scoring Guide (SG): The SG could be either
the original SG or a simplified version. Simplified
SGs were designed to mitigate challenges arising
from ambiguous structure or meaning in the
original SGs, which may lead to less accurate
output from LLMs. Prior studies (Keluskar &
Bhattacharjee, 2024; Kamath et al., 2024) indicate
that rephrasing or clarifying sentences in prompts
can significantly improve LLM output quality.

3.3 Input Optimization

Question-specific Summary: The passage
summarization prompt shown in Figure 1 was used
to generate question-specific summaries that retain
all essential information needed to answer the
question while maintaining the overall flow.
Query-based text summarization aids users in
accessing specific information within lengthy texts,
enabling LLMs to provide efficient access to
relevant content (Yu & Han, 2022; Zhang et al.,
2025). This zero-shot CoT prompt can be applied
across various items, requiring only the
[[question]] input to be modified.

Summarize the passage for a fourth-grade
student, including the overall flow and all
necessary information to correctly answer the
question: [[question]]

1. Read the Passage: Carefully read the
passage to understand the main events and
details.

2. Summarize: Create a summary that
includes the overall flow, and the
necessary information related to the
question.

3. Final Output

e The output should be a coherent
paragraph summarizing the passage.
e Avoid new section headings.

Figure 1: Passage summarization prompt

Simplified SG: Original SGs for one-point
items in PIRLS 2021 consist of two parts: a
description with examples of acceptable responses,
and a description with examples of unacceptable
responses. For the simplified SG, we utilized GPT-

4.1 to improve the readability of acceptable
response descriptions from the original SGs. This
involved rephrasing or reconstructing sentences
and removing examples, guided by the SG
modification prompt (Figure 2). For unacceptable
response descriptions, we adopted a standard
description: “Assign this score if the response does
not explicitly include the key content described in
the [Score: 1] criteria.” Replacing the original item-
specific descriptions.

Additionally, we incorporated notes reflecting
the general guidelines of the PIRLS Scoring
Guides: “(1) Minor irrelevant details are
permissible only if the response explicitly includes
the key content required for [Score: 1] and the
details do not contradict the [Score: 1] criteria. (2)
Character names may vary depending on the
language used; such variations should not affect
scoring.”

Improve the language in the current scoring
guide.

# Steps

1. Review the Scoring Guide: Carefully read
the existing scoring guide to grasp its
content and scoring criteria.

2. Refine Language: Enhance the language
for clarity while keeping the intended
meaning of the original scoring guide.

3. Final Output: Produce the final output in
plain text.

# Output Format
e  Use bullet points if they improve
readability.
e  Maintain the given structure:
“*F*[Score: X]**: Assign this score if
e Avoid new section headings or
providing examples.

Figure 2: SG modification prompt

3.4 AS with PIRLS Scoring Template

We ran two separate AS models using the PIRLS
scoring template: a baseline model and an
optimized AS model with compression (Opt-AS).
The baseline model used the original reading
passages and SGs, while the Opt-AS model
integrated question-specific summaries and
simplified SGs. For each item, a single summary
and simplified SG were created and consistently
applied to all responses. Following the Opt-AS,
custom Python scripts were utilized to



automatically identify and correct mis-formatted
outputs to ensure a consistent format.

3.5 Evaluation Metrics

We evaluated AS performance using four metrics:
compression ratio, exact agreement (EA), and
Cohen’s Kappa (k).

Compression ratio quantifies the efficiency of
our input optimization by comparing the token
count of optimized inputs to that of original inputs.
We specifically focused on the token reduction in
reading passages and SGs, where lower values
indicate higher compression. For SGs, notes
reflecting the general guidelines of the PIRLS
Scoring Guides were excluded from the
compression ratio calculation.

__ Token count of optimized input

R = (1)

Token count of original input

EA, acommonly used metric in AS, is calculated
as the percentage of exact matches between human
and machine scores.

Cohen’s Kappa (Cohen, 1960) measures inter-
rater reliability by considering chance agreement,
and is calculated as follows:

Po— Pe
T 1, )
where p, is the observed agreement among
raters, and p, denotes the expected probability of
chance agreement. The Kappa ranges from 0
(agreement due to chance) to 1 (perfect agreement).
We computed processing time and estimated
costs for Opt-AS using Python scripts. Cost
estimates were based on the number of input and
output tokens, following the GPT-4.1 API pricing
(OpenAl, n.d.): $2.00 per million input tokens and
$0.80 per million output tokens. One million
tokens are approximately equivalent to 750,000
words.

4 Results

Compression Ratio: Tables 3 and 4 present token
counts and compression ratios. On average,
passages were compressed to 20.22% of the
original length, while SGs were reduced to 46.47%
of their original size.

Baseline Opt-AS
Item  Passage SG Passage SG
1 724 112 168 67
2 581 119 117 93
3 724 152 155 65
4 1045 163 168 79
5 640 261 143 71
Avg. 743 161 150 75

Table 3: Token count for passage and SG

Item Passage SG
1 23.20% 59.82%
2 20.14% 78.15%
3 21.41% 42.76%
4 16.08% 48.47%
5 22.34% 27.20%
Avg. 20.22% 46.47%

Table 4: Compression ratio

EA & Kappa: Our Opt-AS model demonstrated
comparable performance to the baseline model,
achieving an average EA of 95.16% and kappa of
0.8852. Notably, for Item 1, the Opt-AS model
yielded a lower kappa of 0.8482 compared to the
baseline (0.9308). This discrepancy can be
attributed to Item 1 being a very easy item,
resulting in highly imbalanced data where 91.9%
of responses received a human score of 1. Despite
this, Opt-AS maintained strong precision and recall
values of 98.55% and 98.34%, respectively (see
confusion matrices in Appendix C).

Baseline Opt-AS
Item
EA K EA K
1 98.78%  0.9308 97.18%  0.8482
2 96.13%  0.9203 96.35%  0.9231
3 94.35%  0.8609 94.47%  0.8750
4 93.64%  0.8706 93.48%  0.8768
5 9327%  0.8570 93.50%  0.8511
Avg. 95.16%  0.8852 94.94%  0.8723

Table 5: EA & Kappa

Processing Time & Cost: The average
processing time and cost per item using Opt-AS
were approximately 6 minutes and $3.09,
respectively (see Table 6). In contrast to the
extensive resources required for human rater
training and scoring (Ward & Bennett, 2012), this



reflects a highly efficient use of time and cost.
Moreover, our Opt-AS reduced costs by nearly
50% relative to the baseline model, which incurred
approximately $6 per item and required around 7
minutes of processing time.

Item Processing Time Cost ($)
1 00:06:05 3.170
2 00:07:17 3.390
3 00:05:59 2.755
4 00:06:32 3.210
5 00:06:19 2.907

Avg. 00:06:26 3.087

Table 6: Processing time & cost

5 Discussion

Our findings indicate that input optimization
significantly reduces the complexity of AS in
reading assessments. Aligned with prior research
(Jiang et al., 2023; Xu & Lapata, 2022), Opt-AS
leverages compression techniques to optimize
input size, substantially shortening text length
while preserving critical information. This
optimization effectively lowers computational
costs without compromising AS performance, even
on low-resource languages such as Arabic,
Croatian, and Maltese. Given the considerable cost
and time involved in scoring over 12,000
multilingual written responses per CR item in
PIRLS, and the shift to fully digital assessment for
all participating countries in PIRLS 2026 (von
Davier & Kennedy, 2024), Opt-AS offers a cost-
effective, energy-efficient, and scalable scoring
solution in a computer-based assessment context.
Despite these promising results, this study has
limitations. First, due to its exploratory nature, the
analysis was conducted on a randomly selected
20% sample. While this sample was representative,
future research should assess the generalizability of
our approach using the full PIRLS dataset across a
broader range of CR items. Next, further
investigation into AS consistency is necessary.
Although GPT-4.1’s temperature was set to 0 to
minimize variability, validating the consistency of
both AS and human scoring remains important.
One potential method is to use sentence embedding
techniques to cluster semantically similar
responses, allowing for a systematic evaluation of
scoring consistency across both scoring methods.

6 Conclusion

This study provides compelling evidence for the
effectiveness of input optimization for AS in
multilingual reading assessments. Our Opt-AS
approach maintained robust performance within
the PIRLS framework, concurrently saving time,
cost, and computational burden. The streamlined
AS enhances operational efficiency and scalability
across a multitude of assessment items and
countries. Ultimately, well-implemented AS
systems promise to deliver timely, accurate, and
reliable reporting to participating countries,
supporting more informed educational policy
decisions.
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A Appendices

A. Sample Size by Country

Country Item Item Item Item Item
1 2 3 4 5

A 410 524 406 342 449
76 82 77 73 68

C 226 252 219 230 212

D 111 119 107 104 100
E 69 70 67 n/a 56
F 72 74 69 64 58

G 126 138 121 127 120
H 102 112 100 142 82
I 60 58 61 60 47
J 80 89 79 79 75
K 85 90 84 69 77

L 107 118 107 99 100
M 67 67 67 63 52
N 46 46 45 43 45
o 80 88 79 79 72
P 83 90 82 76 77
Q 93 92 90 90 79
R 78 87 79 76 70
S 86 91 86 119 77
T 77 82 77 109 70
U 75 80 74 39 64
\% 100 104 99 137 80
W 70 73 69 63 57
X 75 79 73 76 63
Y 76 81 76 76 66
V4 82 89 79 79 76
AA 75 76 71 75 60

Total 2687 2951 2643 2589 2452

Table. Sample size by country

B. PIRLS Scoring Template

Evaluate multilingual responses from an

international reading assessment for fourth-grade

students.

# Steps

1. Translation: Translate the student's response
into English.

2. Scoring: Score the response according to the
given scoring guide.

3. Validation: Determine if the translation could
be "hallucinated" where the text appears
linguistically correct but fails to capture the
intended meaning.

e If the translation is inaccurate, re-
translate and re-score the response.

e If the original text is untranslatable
and nonsensical, keep the original text
and assign a score of 0.

4. Output Construction: Compile the result into a
JSON object, with either the translated text or
the original text (if untranslatable) and the
assigned score.

# Output Format

The output should be formatted in JSON as follows:
{"[English translation or original text]": "Score:
[score]"}

Passage: [[Original reading passage or question-
specific summary]]

Question: [[Item’s question]]

Scoring Guide:

Evaluate responses based on the following criteria.

e [Score: 1]: Assign this score if [[description]]
[Score: 0]: Assign this score if the response
does not explicitly include the key content
described in the [Score: 1] criteria.

# Notes

e  Minor irrelevant details are permissible only if
the response explicitly includes the key content
required for [Score: 1] and the details do not
contradict the [Score: 1] criteria.

e Character names may vary depending on the
language used; such variations should not
affect scoring.



C. Confusion Matrices from Optimized AS

Item 1 Confusion Matrix
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Figure 1. Item 1 confusion matrix
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Figure 2. Item 2 confusion matrix
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Figure 3. Item 3 confusion matrix
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