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Abstract

Self-explanation supports deeper learning by
prompting students to articulate their reasoning
and connect new concepts with prior knowl-
edge. Open-ended self-explanation questions
promote elaborative processing and help ad-
dress knowledge gaps. However, these bene-
fits may be undermined when students game
the system — a maladaptive learning strategy
where students exploit the learning environ-
ment rather than engaging in meaningful learn-
ing. While previous studies have successfully
detected this behavior in students’ interactions
with learning activities, this study focuses on
identifying such behavior in students’ open-
ended responses within a math digital learn-
ing game. We evaluated two large language
model (LLM)-based approaches: one using sen-
tence embeddings and another using a prompt-
based method. Both showed acceptable per-
formance, but the embedding-based model out-
performed the prompt-based one. Error anal-
ysis revealed the prompt-based model strug-
gled with short, low-context responses and pro-
duced false positives when students referenced
using hints. Consistent with earlier findings, we
showed that higher rates of gaming behavior
in open-ended responses negatively correlated
with learning gains.

1 Introduction

Self-explanation, an important pedagogical strat-
egy, has been frequently used in classrooms to
facilitate learning. During this process, students
articulate their reasoning, connect new informa-
tion with prior knowledge, and identify gaps in
their understanding (Fonseca and Chi, 2011; Wylie
and Chi, 2014). Self-explanation can be self-
initiated or externally prompted. Previous stud-
ies have shown that self-explanation leads to im-
proved performance, deeper conceptual understand-
ing, and better long-term retention (Bisra et al.,
2018; VanLehn et al., 1992). In mathematics learn-
ing, students who engage in self-explanation are
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more likely to develop a more robust understanding
of problems and improve their ability to transfer
knowledge to novel situations (McEldoon et al.,
2013; Rittle-Johnson, 2006).

Given these benefits, self-explanation questions
have been increasingly integrated into digital learn-
ing platforms. However, due to the limitations of
digital learning systems—which, until recently, had
a limited ability to process natural language and
provide feedback—self-explanation questions have
often been designed in a closed-ended format, such
as multiple-choice, fill-in-the-blank questions, or
sentence builders (McLaren et al., 2022). Nonethe-
less, open-ended self-explanation questions “may
invite elaborative processing better adapted to each
learner’s unique gaps in knowledge” (Bisra et al.,
2018) and encourage deeper cognitive processing
(Kwon et al., 2011). A recent study comparing
three self-explanation formats (multiple-choice, fill-
in-the-blank, and open-ended) found that students
who answered open-ended self-explanation ques-
tions achieved the greatest learning gains (McLaren
et al., 2022).

However, failing to engage meaningfully with
these self-explanation questions can potentially di-
minish the positive effects. In gaming the system, a
disengaged behavior and maladaptive learning strat-
egy, students attempt to succeed by exploiting sys-
tem properties rather than engaging in meaningful
learning, resorting to behaviors such as systematic
guessing or abusing hints (Baker et al., 2008). Gam-
ing the system has been observed across platforms
and is consistently associated with lower learning
gains and long-term negative outcomes (e.g., Baker
et al. (2006b); Cocea et al. (2009)). In a previ-
ous study, the negative effects of gaming have also
been demonstrated within (non-open-ended) self-
explanation questions, in which students who had
a higher rate of gaming were associated with lower
learning gain. Furthermore, the rate of gaming
in the self-explanation moderated the differences
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in learning between boys and girls (Baker et al.,
2024).

As such, to support interventions, gaming de-
tectors have been developed in the past to identify
instances when students game the system (Li et al.,
2022; Xia et al., 2020). However, most of these
detectors are designed for close-ended questions,
which identify gaming based on interaction patterns
with learning activities. A few gaming detectors
for text-based open-ended responses have primarily
focused on response patterns (e.g., detecting repeti-
tion in open-ended responses) rather than analyzing
the semantic content of the inputs (Darvishi et al.,
2022). For example, identifying instances where
students game the system by cycling through an-
swers, entering responses such as “It will be 7.17,
“It will be 7.27, “It will be 7.3”. As a result, a sig-
nificant gap remains in detecting gaming behaviors
in the open-ended responses.

The advancement of large language models
(LLMs) presents an opportunity for this use case.
Trained on vast amounts of text data, these mod-
els have demonstrated capabilities in processing,
understanding, and generating natural language
with high accuracy (Brown et al., 2020). As a
result, LLMs have been increasingly used to an-
alyze and categorize textual data, presenting an
opportunity to perform classification tasks such
as assessing the correctness or relevance of self-
explanations (Nguyen et al., 2023) or identifying
the presence or absence of gaming in open-ended
responses. One common approach to leveraging
LLMs for classification tasks is through sentence
embeddings, where text inputs are transformed
into high-dimensional vectors that capture seman-
tic meaning. These embeddings can then be in-
put into machine learning models to categorize re-
sponses. Alternatively, prompt-based methods (e.g.
Generative Pre-trained Transformer; GPT) frame
classification tasks as text-generation problems, al-
lowing pre-trained LL.Ms to infer labels based on
contextual prompts. Several studies have found that
classifying embeddings outperforms prompt-based
approaches in various classification tasks (Liu et al.,
in press; Hutt et al., 2024). Recent studies have
explored prompt engineering, examining how one-
shot (providing one example), few-shot (providing
a few examples), adding context (Xiao et al., 2023),
modifying prompt structure (White et al., 2023),
and defining roles influence model performance
(Hou et al., 2024). However, less research has ex-
plored where the two approaches diverge and under
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what conditions or context one approach is more
effective than the other, evaluating and comparing
the validity and reliability of the two approaches
for classification tasks.

In this study, we explored the use of large lan-
guage models (LLMs) to detect gaming the system
in open-ended responses to self-explanation ques-
tions within a math digital learning game. We iden-
tified gaming behavior using both an embedding-
based and a prompt-based approach and compared
their performance. To understand where the two
approaches diverge, we conducted an error analy-
sis examining the types of errors each approach is
prone to, highlighting the context under which one
approach might be more efficient than the other.
Lastly, we applied the best-performing model to
the full dataset and conducted analyses to exam-
ine the relationships between gaming during the
self-explanation step and learning gains within this
learning system. By detecting gaming the system
in this additional context, we enhance our under-
standing of how broadly this phenomenon occurs
and enable learning technologies to intervene in a
wider range of contexts. Additionally, the compari-
son between the two approaches contributes to the
growing body of research on leveraging LLMs for
text classification.

2 Methods

2.1 Learning Platform and Data

Student log data were collected from Decimal
Point, a single-player web game designed to moti-
vate middle-school students to learn decimal con-
cepts (McLaren, 2024; McLaren et al., 2017). Stu-
dents wander through a virtual amusement park
and play a variety of mini-games that incorporate
decimal challenges, such as sorting decimals. In
the version of the game where the data was col-
lected, students were first asked to solve a problem
(problem-solving step) and then prompted to reflect
on how they solve the problem and explain their rea-
soning with an open-ended self-explanation ques-
tion (self-explanation step) (McLaren et al., 2022).
To assure that students expend at least minimal ef-
fort in answering the self-explanation questions,
the response needed to contain at least four words
with at least one of the words from a relevant list
(including common misspellings) that would legiti-
mately be found in a correct explanation. Students
could make multiple attempts and could only move
to the next question once the response meets these



criteria.

To investigate LLM’s ability at detecting gaming
in open-ended responses, we collected the text-
based responses submitted by 212 students and
delineated them into clips, with each clip contain-
ing all the attempts (responses) a student submitted
at answering a self-explanation question. In to-
tal, 2553 clips were extracted. We also collected
students’ pre-test, post-test, and delayed post-test
scores.

2.2 Coding Gaming the System

Text replay coding was conducted to establish
ground truth. In text replays, human coders ex-
amine each clip and determine the presence or
absence of gaming the system using a codebook
(Baker et al., 2006a). The codebook was developed
through an iterative process to ensure that the be-
haviors classified as gaming aligned with previous
conceptualizations (e.g. as defined in Baker et al.
(2008)) and were salient in the dataset. Through
this process, we developed a codebook consisting
of three criteria: (1) a low degree of semantic differ-
ence between consecutive responses — e.g. chang-
ing between highly related alternatives, (2) system-
atically cycling through modifications to responses
or potential multiple answers, and (3) making a
conceptual or functional change between responses
(e.g., identifying a concept versus suggesting an ac-
tion, trying to figure out what category of response
is needed without thinking through the question)
in conjunction with the previous two criteria. The
gaming criteria and examples are presented in Ta-
ble 1.

Using the codebook, two coders first indepen-
dently coded the same set of data to establish inter-
rater reliability (x = 0.8). Once consensus was
reached, the coders proceeded to code a total of
1,465 clips from 116 students, of which 8.9% were
positive (gaming) clips.

2.3 Approach 1: Detecting Gaming with
Sentence Embeddings

To train models that automatically detect gaming,
we first con-catenated textual responses from all
attempts within a clip, separating each attempt
with a period. We then vectorized the text using
two sentence embedding models: the Universal
Sentence Encoder Large v5 (USE) developed by
Google, which generates a 512-dimensional vec-
tor for each entry (Cer et al., 2018), and sentence-
embedding-3-short developed by OpenAl, which
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produces a 1,536-dimensional vector (Neelakantan
et al., 2022).

For each set of embeddings, we trained a neural
network model with one hidden layer to predict
the presence or absence of gaming. The models
were evaluated using 5-fold student-level cross-
validation. Model performance was evaluated us-
ing the average Area Under the Receiver Operating
Characteristic Curve (AUC) and Kappa.

2.4 Approach 2: Detecting Gaming using
Prompt-Based Model

For prompt-based methods, we leveraged both zero-
shot and one-shot prompting techniques, provid-
ing the GPT-4-turbo model with the definition of
gaming the system and the three criteria from the
codebook for zero-shot prompting, and the cor-
responding examples (as listed in the codebook)
for one-shot prompting. The exact prompt used
for zero-shot prompting is presented below. For
one-shot prompting, examples were added to the
prompt. The temperature was set to 0 to minimize
randomness. To account for the stochastic nature of
GPT, we ran the prompt three times to assess con-
sistency across iterations. The final prediction was
determined using majority voting across the three
outputs. The predictions were evaluated against the
ground truth using AUC and Kappa.

“Review the provided text and code it
based on the construct: gaming the sys-
tem. The definition of this construct is:
a maladaptive learning strategy where
students attempt to succeed by exploit-
ing properties of a learning environment.
Some criteria of gaming the system in
open-ended responses include: 1) a low
degree of semantic difference between re-
sponses, 2) cycling through multiple an-
swers/ modifications to their responses,
or 3) conceptual or functional change be-
tween responses (e.g., identifying a con-
cept versus suggesting an action) accom-
panied by the previous two criteria. After
reviewing the text, assign a code of °1’ if
you believe the text exemplifies gaming
the system, or a ’0’ if it does not. Your re-
sponse should only be °1” or ’0’. TEXT
TO BE REVIEWED: [TEXT]"



Gaming Criteria Attempt 1

Attempt 2 Attempt 3 Attempt 4

Minor Semantic Difference

I need to move it verti-

Move side to side

cally
Cycling through Modifications It will be 7.1 It will be 7.2 It will be 7.3 -
Conceptual or Functional Change Itis 1.7 Itis 1.9 By adding By subtracting

Table 1: Examples of gaming behaviors across multiple attempts.

3 Results

3.1

As shown in Table 2, with 5-fold student-level
cross-validation, the neural network model built
using sentence embeddings from the Universal
Sentence Encoder achieved an average AUC of
0.902 and a Kappa of 0.535. The neural net-
work model using sentence-embedding-3-short as
the encoder performed better, reaching an average
AUC of 0.935 and a Kappa of 0.564. In contrast,
the prompt-based model with zero-shot prompting
achieved an AUC of 0.699 and a Kappa of 0.345,
and an AUC of 0.754 and a Kappa of 0.358 with
one-shot prompting. We also recorded the number
of false positive and false negative cases for each
model, which is discussed in the next section.

Model Performance

3.2 Error Analysis

To examine differences in prediction accuracy
across the models, we conducted an error analy-
sis using both quantitative and qualitative methods,
counting the number of type I and type II errors
as well as reviewing the responses the models mis-
classified.

As shown in Table 2, both sentence embedding
models were more likely to make Type II errors
(false negatives) than Type I errors (false positives),
meaning they incorrectly assessed the student as
not gaming when the response actually demon-
strated gaming behaviors. In contrast, the prompt-
based models were more prone to Type I errors
(false positives) than Type II errors (false nega-
tives), predicting gaming when the student was not
actually gaming. Additionally, Type I errors were
twice as frequent for the prompt-based models com-
pared to the sentence embedding models.

To better understand where the models failed to
make accurate predictions, we examined the mis-
classified cases, analyzing responses in which there
was a discrepancy between the sentence embedding
approach and the prompt-based approach. Of the
1,465 responses, 178 were correctly classified by
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both sentence embedding models (Universal Sen-
tence Encoder and sentence-embedding-3-short)
but misclassified by at least one of the prompt-
based approaches. Among these, 25 had a true
label of gaming, and 153 had a true label of not
gaming.

Upon examining these cases, we identified sev-
eral patterns. One common pattern among false
positives for the prompt-based models was re-
sponses that are not considered gaming in this
particular dataset but could be considered gaming
if gaming were defined more broadly. For exam-
ple, some responses mentioned the use of hints.
In one instance where the prompt-based model
falsely classified the behavior as gaming, the stu-
dent (somewhat oddly) stated "Always remember
to use the hint button. It gives you the answer if you
click until it doesn’t say "next,” and you should get
the answer correct if you follow what it says." An-
other false positive example is when a student said,
"22.0. You have to add. 22.0. You can look at the
hints to find the answer. You can find this answer
by adding 17.6 + 4.4." In these cases, the prompt-
based model flagged the responses as gaming likely
due to mentions of hints, but they may not strictly
align with the definition of gaming behavior in this
specific context.

Comparing between zero-shot and one-shot
prompting for the false positive cases, we noticed
that the majority of cases misclassified by the one-
shot model were responses that repeated them-
selves without any semantic changes. For example,
when asked, "Is 0.2 bigger or smaller than 0.22?
How do you know?", a student responded, “It is
smaller. It is smaller.” The model with one-shot
prompting misclassified this as gaming, whereas
the zero-shot model correctly classified it as not
gaming, as there was no semantic difference be-
tween the two entries, and it didn’t imply a cycling
behavior.

A common pattern among false negatives for
the prompt-based model with zero-shot prompting
was that shorter responses lacked sufficient con-



Model AUC (stdev)  Kappa (stdev) False Positive  False Negative
Universal sentence encoder 0.902 (0.038) 0.535(0.087) 52 73
sentence-embedding-3-short  0.935 (0.026)  0.564 (0.088) 44 70
Prompt-based zero-shot 0.699 0.345 112 68
Prompt-based one-shot 0.754 0.358 169 48

Table 2: Classification results and total errors.

text for the model to accurately interpret gaming
behavior. For example, when asked the same ques-
tion, "Is 0.2 bigger or smaller than 0.22? How do
you know?" a student responded, "Smaller. Big-
ger. Bigger. Bigger. Smaller. Smaller because
0.22 has an extra digit than 0.2." Due to the brevity
of the response, the model may have struggled to
contextualize it properly, leading to a misclassifica-
tion. However, this is less frequent with one-shot
prompting, possibly because of the brevity in the
examples provided.

Altogether, these patterns suggest that the
prompt-based model may struggle with nuanced
cases where gaming behaviors depend on context,
leading to predictions that are not context-specific.
Specifically, it tends to misclassify responses that
mention hints or shortcuts as gaming, even when
they might not strictly fit the definition based on
the current operationalization. Compared to zero-
shot, one-shot prompting is also more prone to
Type 1I errors, misclassifying cases where students
repeat responses as gaming rather than as recycling
responses with minimal semantic changes. Con-
versely, prompt-based approach struggles to detect
gaming in shorter responses that lack sufficient con-
text, especially when examples are not provided.

The same qualitative approach was conducted
to evaluate the predictions of the embedding-based
models, focusing on responses that were correctly
classified by both prompt-based models but mis-
classified by at least one of the embedding-based
models. Of the 1,465 responses, 84 were correctly
classified by both prompt-based models (zero-shot
and one-shot) but misclassified by at least one of
the embedding-based models. Among these, 32
had a true label of gaming, and 52 had a true label
of not gaming.

By analyzing the false negative cases, we found
that, similar to zero-shot prompting, sentence-
embedding models are prone to Type II errors when
responses are brief and seemingly disjointed. This
issue is especially apparent when key explanatory
words (such as “because”) are missing. For exam-

95

ple, when asked, “Is 0.456 to the left of O or to the
right of 0 on the number line? How do you know?”,
one student responded, “Right. 0.5. Left. 0.45.
0.45 to the right.” Another example comes from
the question, “Is 6.5 bigger or smaller than 6.41?
How do you know?”, to which a student responded,
“6.5 is smaller. 6.41 is smaller. 6.41 is bigger.”
These responses clearly reflect cycling behavior,
even though they lack explanatory words (such as
“because”) that directly address the question’s ex-
planatory prompt. Sentence-embedding models
failed to detect gaming in such cases possibly be-
cause they rely on overall semantic similarity to
the example cases (e.g., frequent usage of explana-
tory terms) and lack the contextual understanding
needed to recognize patterns like repetitive guess-
ing or cycling.

3.3 Gaming the System and Learning Gains

After applying the best model (the model trained us-
ing embeddings derived from sentence-embedding-
3-short) to the full dataset (2,553 clips), we
found that students’ detected frequency of gam-
ing was negatively correlated with the pre-test
(r = —0.233, p = 0.058), post-test (r = —0.312,
p = 0.010), and delayed post-test (r = —0.355,
p = 0.003). We found that gaming frequency
was not correlated with normalized learning gains
between the pre-test and post-test (r = —0.121,
p = 0.329), but was negatively and significantly
correlated with normalized learning gains between
the pre-test and delayed post-test (r —0.247,
p = 0.044).

4 Discussion and Conclusion

4.1 Main Findings

Self-explanation promotes deeper learning by help-
ing students articulate their reasoning and connect
new information with prior knowledge. Open-
ended self-explanation questions, in particular, fos-
ter more elaborative processing, allowing students
to address their unique knowledge gaps. However,



these benefits can be undermined when students
disengage and attempt to game the system. This
study addresses this challenge by introducing an au-
tomated approach to detect gaming in open-ended
responses using large language models (LLMs).
Specifically, we compare a sentence embedding-
based method with a prompt-based approach. By
identifying gaming behavior in real time, this
method can support targeted interventions, such
as adaptive feedback, to help students re-engage
and maximize the benefits of self-explanation.

Our results show that while all models
demonstrate reliable performance in detecting
gaming in open-ended responses, the sentence
embedding-based approach, particularly the Ope-
nAl sentence-embedding-3-short model, outper-
formed the prompt-based method, achieving an
AUC of 0.935 and a Kappa of 0.564. While the
prompt-based model was easier to implement, it
was more prone to false positives, frequently mis-
classifying responses that mentioned hints or re-
peated responses as gaming. These results high-
light the challenges of using prompt-based mod-
els for nuanced classification tasks, particularly
when the definition of the target behavior is context-
dependent

Additionally, both prompt-based and sentence-
embedding-based models struggled with shorter,
context-poor responses, leading to false negatives.
However, this issue can be attenuated with one-shot
prompting.

Overall, the comparison between the two ap-
proaches suggests that sentence-embedding is more
conservative in detecting gaming, making it more
prone to Type II than Type I errors, at least for this
application. On the other hand, the prompt-based
approach—possibly due to access to additional con-
textual information provided in the prompt is more
liberal and less context-specific, making it more
prone to Type I than Type II errors. These findings
may suggest a direction for future study to explore
the possibility of combining the two approaches
and leveraging them for their strengths. It is also
possible to adapt the model selection based on the
data as well as the desired outcomes.

Furthermore, we found that the frequency of de-
tected gaming behavior was negatively correlated
with students’ pre-test, post-test, delayed post-test
scores, and delayed learning gains, suggesting that
gaming the system in this context is also associated
with lower learning outcomes. This aligns with pre-
vious research that has consistently linked gaming
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behavior with reduced learning gains (Baker et al.,
2008; Cocea et al., 2009).

4.2 Future Work

We acknowledge the following limitations. First, it
is possible that the prompt-based model’s perfor-
mance may have been constrained by the limited
prompt engineering employed in this study, for
instance, not providing more specific context infor-
mation for self-explanations. Future work could ex-
plore more sophisticated prompting strategies, such
as few-shot learning, where the model is provided
with more than one labeled example to improve its
performance. Additionally, fine-tuning the LLM
on a domain-specific dataset could further enhance
its ability to detect gaming especially in contexts
where nuanced semantic understanding is critical.

Second, the generalizability of our findings may
be limited by the specific context in which gam-
ing is being operationalized. Future studies should
validate these approaches in other learning environ-
ments and with more diverse datasets. This would
help determine whether the observed patterns hold
across different digital learning contexts and stu-
dent populations.

Finally, while our study focused on detecting
gaming behavior, future research could explore the
possibility of distinguishing specific gaming behav-
iors (e.g., minor semantic differences or cycling
through modifications) and examine whether they
impact learning outcomes differentially.

4.3 Conclusion

In contrast to previous gaming detectors based on
interaction data, this study demonstrates the poten-
tial of using LLMs to detect gaming behavior in
open-ended self-explanation responses by identi-
fying gaming based on the semantic meaning of
text-based responses. Our findings suggest that
sentence embedding-based approaches are more
effective than prompt-based methods for this task,
possibly because the definition of gaming the sys-
tem is context-dependent. Consistent with prior
research, we found that gaming in open-ended self-
explanation questions is also negatively correlated
with learning gains, emphasizing its detrimental
impact and the need for intervention. The ability to
detect gaming in open-ended responses opens new
possibilities for intervention and support in digital
learning environments, helping ensure that students
engage meaningfully with self-explanation tasks
and achieve better learning outcomes.
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