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Abstract

Collaborative argumentation enables students
to build disciplinary knowledge and to think
in disciplinary ways. We use Large Language
Models (LLMs) to improve existing methods
for collaboration classification and argument
identification. Results suggest that LLMs are
effective for both tasks and should be consid-
ered as a strong baseline for future research.

1 Introduction

Collaborative argumentation is a key mechanism
through which students engage in critical thinking
and co-construct knowledge during classroom dis-
cussions (Larson, 2000; Reznitskaya and Gregory,
2013). Because well-facilitated discussions are a
cornerstone of effective instruction, they are fre-
quently a target of measurement (Matsumura et al.,
2008; Hill et al., 2008; Reznitskaya and Wilkin-
son, 2021; Bouton and Asterhan, 2023). However,
large-scale human evaluation is costly and chal-
lenging due to the complexity of collaboration and
argumentation in multi-party dialogue. Thus, Al
methods — across a range of measurement frame-
works — are being developed to automatically as-
sess classroom dialogue quality (Wang and Dem-
szky, 2023; Xu et al., 2024; Kelly et al., 2018), and
to develop tools for improving dialogic teaching
aimed at teachers (Lugini et al., 2020; Suresh et al.,
2021), coaches (Wang and Demszky, 2023), and
learning scientists (Tran et al., 2024b).

The tasks of computationally analyzing students’
collaboration and argumentation in a classroom
discussion are challenging (Olshefski et al., 2020;
Lugini and Litman, 2020; Wang and Chen, 2024;
Shiota and Shimada, 2022). For our dataset (ex-
ample in Table 3 and details in Section 3), col-
laboration analysis involves classifying every stu-
dent turn as relevant to collaborative argumentation
(e.g., initiating a new idea or challenging another

student’s claim) or not (non-argumentative). Ar-
gumentation analysis can be further divided into a
pipeline of two subtasks. The first involves identify-
ing spans of text consisting of argument discourse
units (ADUs), i.e., argument component detection
(ACD). The next subtask, argument component
classification (ACC), focuses on assigning a label
(Claim, Evidence, Warrant) to each ADU .

While computational argument mining is an ac-
tive research area (Stede and Schneider, 2019;
Lawrence and Reed, 2020), relatively little work
has been done on collaborative discussions. Also,
prior work often omits ACD and takes already iden-
tified argument components as input, and thus fo-
cuses on only argument component classification
(ACC) rather than on end-to-end argument mining
(Deguchi and Yamaguchi, 2019; Tran and Litman,
2021). Finally, argument component classification
is often treated as a sequence labeling task, but it
needs extensive finetuning and offers limited con-
trol over the output, especially when capturing rela-
tionships between components (Schulz et al., 2019;
Alhindi and Ghosh, 2021).

To address these challenges, we leverage Large
Language Models (LLMs) for two key tasks in as-
sessing collaborative argumentation in classroom
discussions. LLMs offer strong generative capabil-
ities, enabling effective classification and sequence
labeling with minimal annotated data. For collab-
oration classification, we replace traditional clas-
sifiers with LLMs and compare multi-class versus
binary prompting strategies. For end-to-end argu-
mentation identification, we use LLMs to jointly
segment and classify argument components. Our
study aims to answer the following questions:
RQ; Is LLM effective for collaboration classifica-

tion?
R@Q, Can we use LLM to perform end-to-end ar-
gument identification, and how good is it?

'We use ADU and argument component interchangeably.
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Our contributions are two-fold. First, we show
that few-shot prompting enables LLMs to outper-
form a BERT-based collaboration classifier trained
on significantly more annotated data, with binary
prompting proving more effective than multi-class
classification. Second, we show that LLMs can
perform end-to-end argument identification, with
our structure-focused evaluation highlighting their
effectiveness under a simplified argument scheme
(i.e., at most one Claim, Evidence, or Warrant).

2 Related Work

Much of the prior work on argument mining ad-
dressed the problems of argument segmentation
(i.e., identifying ADU boundaries), component
classification, and relation identification modeled
in a pipeline of subtasks (Potash et al., 2017; Nicu-
lae et al., 2017). However, many of them assume
the availability of segmented argumentative units
and do the subsequent tasks such as classification
of argumentative component types (Lugini and Lit-
man, 2018, 2020; Garcia-Gorrostieta et al., 2018),
and argument relation identification (Ghosh et al.,
2016; Gemechu et al., 2024; Contalbo et al., 2024).
We perform argument component segmentation and
classification simultaneously by utilizing LLMs.

Previous work on argument segmentation in-
cludes approaches that model the task at a sur-
face level by classifying sentences as argumen-
tative or non-argumentative (Ajjour et al., 2017;
Chakrabarty et al., 2019). At a more fine-grained
level, there are studies that use heuristics to identify
argumentative segment boundaries (Wachsmuth
et al., 2016). Prior work also treats the task as
a sequence labeling task by performing token-level
classification to directly identify the type of the ar-
gument component and achieves promising results
(Schulz et al., 2019; Alhindi and Ghosh, 2021).
Additionally, multi-task learning, which utilizes
other NLP tasks such as part-of-speech tagging
or datasets from other domains, is a widely used
tool to further boost performance of argument com-
ponent classification (Daxenberger et al., 2017;
Schulz et al., 2018; Mensonides et al., 2019). Un-
like these approaches, we do not formulate the argu-
ment identification task as a token-level sequence
labeling task. Instead, we consider it a text gener-
ation task by leveraging LL.Ms, which have been
shown to be effective at text span extraction (Tran
et al., 2024a; Wang et al., 2025).

Since LLMs such as GPT-4 (OpenAl et al.,

2024), Llama (Grattafiori et al., 2024), and Mistral
(Jiang et al., 2023) have outperformed pretrained
language models (PLMs) such as BERT (Devlin
et al., 2019) in many natural language processing
(NLP) tasks, there has been growing interest in
leveraging them for argument mining and text ex-
traction. Kashefi et al. (2023) uses GPT-3 for claim
and premise detection, but it is only a classifica-
tion task on the sentence level. Chen et al. (2024b)
explores the potential of LLMs in many argument
computation tasks, but does not cover joint tasks
such as end-to-end argument identification. Pichler
et al. (2025) and Lin and Koedinger (2024) demon-
strate that LLMs are effective in sequence labeling
if they are prompted appropriately, but they do not
test them in the context of argument mining. Our
work leverages LLLM for analyzing collaborative
argumentation, focusing on 2 tasks: collaboration
classification and argument identification.

3 Data

We use Discussion Tracker (DT)?, publicly accessi-
ble classroom discussion data annotated for collab-
orative argumentation (Olshefski et al., 2020), for
our experiments. The DT data comprises 90 tran-
scribed multi-party discussions conducted in Amer-
ican high school English Language Arts classes.
We use two subsets from the corpus. They were
collected in 2019 (29 transcripts) and 2022 (61 tran-
scripts) using the same annotation guidelines, so we
refer to them as DT_19 and DT_22, respectively.
We use the data for two tasks: collaboration
code classification and argumentation identifica-
tion. Students’ talk at the turn level was anno-
tated for collaboration, and talk at the argument
discourse unit (ADU) level was annotated for argu-
mentation. Specifically, argumentative turns were
annotated with one of four collaboration codes:
New Idea, Agreement, Extension, and Challenge;
turns that contained no substantive argumentation
were labeled with the collaboration code None. Ar-
gumentative turns were further segmented into ar-
gument discourse units (ADUs), which were la-
beled for argument types: Claim, Evidence, or War-
rant. Annotators were instructed not to segment
turns into multiple claims or multiple units of evi-
dence, and every word belongs to one ADU (i.e., no
gaps between ADUs). As a result, each segmented
ADU is considered an argument component.
Definitions of collaboration and argumentation

Zhttps://discussiontracker.cs.pitt.edu
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coding are in Tables 1 and 2. Table 3 shows an
annotated transcript, while statistics are in Table 4.

4 Method

We use few-shot prompting to instruct a LLM to
tackle the tasks, using the prompts in Tables 5 and
6. The few-shot examples are not from the test
set; they are either from the training set (cross-
validation) or from a different DT corpus (e.g., us-
ing examples from DT_19 to test on DT_22).

4.1 Collaboration Classification

The collaboration task involves classifying a stu-
dent’s turn into 1 of 5 classes: Non-Argumentative
(None), New Idea, Agreement, Extension, Chal-
lenge. We utilize LLMs in two approaches.

LLM-multi. We treat the task as standard multi-
class classification. Specifically, we ask the LLM
which of the 5 classes it thinks the turn belongs
to. The prompt includes the instruction, definitions
of the 5 classes, and 10 few-shot examples. Each
few-shot example consists of a turn and its correct
class. We have 2 examples for each of the 5 classes.

LLM-binary. Although not specifically fo-
cused on collaboration classification, prior work
has shown that utilizing LLM is more effective at
binary classification compared to multi-class clas-
sification on classroom discussion data (Tran et al.,
2024b). Thus, we perform 4 binary classification
tasks for each student’s turn. For an argumenta-
tive class X (New Idea, Agreement, Extension, and
Challenge), we ask the LLM a yes/no question
about whether the turn is considered X by provid-
ing it with X’s definition. We call the set of the
remaining argumentative classes except X as S. For
instance, if X is New Idea, S = { Agreement, Ex-
tension, Challenge}. For few-shot examples, we
provide 5 examples where a turn should be pre-
dicted as X (positive examples) and 5 examples
where it should not be (negative examples). In the
5 negative examples, we use 1 example where the
turn’s gold-standard class is s; for all s; € S and
2 examples where the turn’s class is None. For the
final turn-level prediction, if the LLM predicts ‘no’
for all of the 4 argumentative classes, it is a non-
argumentative turn (None). If there is more than
one class predicted as ‘yes’, we select one with the
highest probability, p(yes|X).

4.2 Argumentation Identification

This task is typically approached as a two-step
pipeline applied to argumentative student turns.

The first step, argument component detection
(ACD), involves identifying spans of text that con-
stitute argument discourse units (ADUs). The
second step, argument component classification
(ACC), assigns a label (Claim, Evidence, or War-
rant) to each identified ADU. One way to solve
two subtasks simultaneously is to treat them as a
sequence labeling task using the BIO scheme (Be-
ginning, Inside, or Outside) (Schulz et al., 2019;
Alhindi and Ghosh, 2021). Specifically, instead of
segmenting the text into ADUs first, we can con-
duct a token-level® classification task to identify
the type of the argument component (e.g., B/I to-
kens from claim, evidence, and warrant) directly
by joining the first and the second sub-tasks in a
single task (i.e., B-Claim, I-Claim, B-Evidence, ...).
See Figure 1 for an illustration of the BIO conver-
sion. However, since LLMs are potent tools for
following human instructions, prior work utilizing
LLM:s for sequence labeling employs generative
approaches instead of performing the traditional
token-level classification task (Lin and Koedinger,
2024; Wang et al., 2025). Also, due to the nature
of the dataset, every word in an argumentative turn
belongs to either Claim, Evidence, or Warrant (i.e.,
no O labels are present). Thus, we treat the task
as a text generation task for the LLMs to perform
both ACD and ACC tasks simultaneously.
LLM-auto. We let the LLM extract non-
overlapping text spans of the target turn into C,
E, and W. Because 95% of turns had a collabo-
rative relationship with turns within the previous
four turns (Olshefski et al., 2020), we provide four
previous turns for the dialogue context, along with
the definitions of C, E, and W for reference. The
output is formatted as Claim: {claim_span}, Evi-
dence: {evidence_span}, Warrant: {warrant_span}.
Because an argumentative turn does not necessar-
ily consist of all three segments (e.g., only C and
E), the output text spans can be empty. We also
ensure that all segmentation scenarios are covered
in the few-shot examples by including at least one
example for each class combination. Specifically,
if we consider a scenario as a combination of C, E,
and W, along with their order of appearance in the
text from left to right, there are 10 scenarios in the
dataset: (C), (E), (C, E), (E, ©C), (C, W), (E, W),
(C,E, W), (C,W, E), (E,C, W), and (E, W, C). We
provide one example for each of the scenarios.

LLM-refine. Previous studies show that (i)

3We use words as tokens.
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LLM is more effective with more detailed instruc-
tions (Tran et al., 2024b) and (ii) LLM is good
at judging LLM’s generated answers (Chen et al.,
2024a; Huang et al., 2025). We assume that LLM
is better at the task when the correct combination
of C, E, and W is provided. In other words, if
the LLLM knows that the turn only contains C and
E, it provides a better segmentation than it does
without that information. First, we use LLM to
generate multiple argument segmentations (LLM-
gen) given the combinations of C, E, and W (e.g.,
segment the text into Claim and Evidence). We
ignore the ordering of C, E, and W in the combi-
nation, but instead provide different orderings in
the few-shot examples. Therefore, each turn will
be segmented into one of the following six com-
binations: (C), (E), (C, E), (C, W), (E, W), (C, E,
W). Since (C) and (E) simply require marking the
entire turn as C or E, we do not need LLM to do so.
As a result, each turn will be segmented into four
different ways by the LLM. The prompt for the
first step consists of four previous turns as the dia-
logue context, the definitions of C, E, and W, and
a specific argument combination we want to split
the text into. The second step, the refinement step
(LLM-judge), involves selecting the most suitable
segmentation from the six generated options. To
do so, we consult another LLM to select the best
segmentation from the six options.

LLM-acc. Since prior work often only focused
on the argument component classification (ACC)
task (Lugini and Litman, 2020; Kashefi et al., 2023;
Garcia-Gorrostieta et al., 2018; Hidayaturrahman
et al., 2021) and assumed that the correct segmen-
tation is given, we additionally conduct an experi-
ment on using LLM specifically for argument com-
ponent classification. For an ADU, we prompt the
LLM to classify it as C, E, or W. Similar to other
LLM approaches, we provide the 4-turn dialogue
context, definitions of C, E, and W, along with 9
few-shot examples (3 of each type C, E, and W).

5 Experimental Setup

5.1 Baseline Models

Collaboration. We train a BERT model to predict
whether a turn is either a New Idea, Agreement,
Extension, Challenge, or Non-argumentative.

Argumentation. For the argument component
classification task in which the correct argument
component segmentation is provided, we compare
our LLM’s results (LLM-acc) with results from

a BERT-based model utilizing local context and
speaker context from Lugini and Litman (2020)
(BERT-context). For the downstream argument
identification task (argument segmentation + clas-
sification), we follow prior work and use BERT for
sequence labeling as a baseline (Schulz et al., 2018;
Kashefi et al., 2023). We call it BERT-BIO, which
employs a BIO classification scheme to identify
and classify argument components. We use BERT
as the base transformer model and train a token-
level classifier head on top. This baseline aims to
label each token as B-Claim, I-Claim, B-Evidence,
I-Evidence, B-Warrant, or I-Warrant.

We note that the BERT-context’s results are from
a publication using an older version of the DT_19
data (Lugini and Litman, 2020), which is no longer
available. Our DT_19 version, which is corrected
for better consistency, has 10 more ADUs (3145
versus 3135) compared to their version. However,
because the difference is small, we still use the pre-
viously published BERT-context results to compare
with our models’ performance on the DT_19 data.

All BERT models are bert-base-uncased*.

5.2 Experiment and Evaluation

We compare the performance of LLM and baseline
approaches to answer the two research questions.
mentioned in Section 1.

For collaboration prediction and argument com-
ponent classification, we use the F; score as our
evaluation metric since it is a standard multi-class
classification task. We also report results in predict-
ing Argumentative and Non-Argumentative turns.

For argument identification (segmentation + clas-
sification), due to our limited resources, we only
conduct experiments on the larger corpus DT_22.
After converting LLM’s outputs to the word-level
BIO format (see Figure 1 for an example), we can
treat the task as a word-level classification task and
compute the weighted F; score. We decided to use
weighted F; because finding the exact boundaries
of each segment is not essential empirically.

We also propose a new metric for argument iden-
tification on the component level. In a real-world
application of an automated argument identification
system (e.g., creating teacher dashboard analytics
such as how many student claims were supported
by evidence (Lugini et al., 2020)), it is more cru-
cial to capture the structure of argument compo-
nents within a single turn than to find the exact

*https://huggingface.co/google-bert/bert-base-uncased
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splits. This is applicable to our data, as there are
at most three argument components that cover ev-
ery word in a turn. The word-level F; score does
not consider component-level matching, whereas
metrics like seqeval (Nakayama, 2018), which are
popular for sequence labeling tasks such as named
entity recognition, only consider strict matching
between boundaries. We want to know whether the
automated segmentation and classification have the
same argument components, while not too strict in
finding the boundaries between them (e.g., it is fine
to have the two last words from Evidence identified
as part of Warrant). To do so, we modify the metric
from SemEval-2013 (Segura-Bedmar et al., 2013).
Given a threshold K, a true positive (TP) is counted
when the predicted span (pred_span) has the same
label as the gold-standard span (gold_span) and
they overlap at least K %. The overlapping is calcu-
lated as maf(rl‘; (ig(sfi 2g2§3§0—1§ig[m‘), where | - | denotes
the number of words in a span. Then, we can cal-
culate Precision, Recall and F; normally.

The value of K controls how strictly we want the
spans to match. At K = 100, we require an exact
match between the two spans (i.e., same bound-
aries and same label) for a TP. At K =0, we only
compare predicted labels (C, E, W) with the gold-
standard ones for a given turn. For example, if we
predict a turn has one C and one E, as long as the
gold-standard consists of exactly one C and one E,
it is a correct prediction. We call this new metric
Argument Component Score at K (ACS@K).

All experiments, including the baselines, are con-
ducted using the same 10-fold cross-validation split
provided by the DT corpus. Due to our limited re-
sources, we utilize LLama3-8B (Grattafiori et al.,
2024) as our LLM for all tasks 7.

6 Results and Discussion

6.1 Collaboration Results (RQq)

Table 7 shows the macro-F; over 10-fold cross-
validation for the collaboration prediction task on
both DT_19 and DT_22. Both LLM approaches
significantly outperform the BERT baseline on both
datasets. Additionally, LLM-Binary is significantly
better than LLM-multi in all categories (p < 0.05),
suggesting that using multiple LLMs as binary clas-
sifiers is an effective approach (Tran et al., 2024b).
On the other hand, LLM approaches are not signif-
icantly better than BERT in classifying Argumen-
tative and Non-Argumentative turns (except for

>https://huggingface.co/meta-llama/Llama-3.1-8B

LLM-binary in DT_22). It implies that the BERT
model is not inferior in identifying argumentative
turns, but struggles to predict the correct labels
among the four collaboration codes. Using Cohen’s
kappa as the metric (Table 8), we get similar ob-
servations as the two LLM approaches constantly
outperform BERT, and LLM-binary consistently
achieves the best performance.

Looking into Table 9, the higher weighted F;
scores compared to macro F; (Table 7) indicate that
the models perform better on more frequent classes.
We observe that the LLM approaches significantly
outperform BERT in New Idea, Extension, and
Challenge. Among these three classes, New Idea
and Challenge are consistently the bottom 2 for all
models. We also witness opposite cases for the two
minority classes that take up less than 10 % of the
data on both datasets, Agreement and Challenge.
For Agreement, while LLM-binary is superior com-
pared to BERT, BERT is not significantly worse
than LLM-multi, and it even surpasses LLM-multi
on DT_22. We hypothesize there are lexical clues
(e.g., “I agree ...”) for Agreement, and the increase
in training data for Agreement in DT_22 (177 ver-
sus 38 instances) helps BERT learn to recognize
the pattern of this type of collaboration. On the
other hand, both BERT and LLM approaches strug-
gle with Challenge, suggesting that the difficulty
does not come from the scarcity of the class (i.e.,
LLM models need no training data). For Extension,
while LLM-multi and LLM-binary’s results sug-
gest that it is easier than Agreement, BERT finds
the opposite, and the largest performance gap be-
tween BERT and LLM approaches also falls in this
category. This implies that BERT is not as effective
in distilling knowledge to identify Extension after
training as an LLM with few-shot prompting.

6.2 Argumentation Results (RQ;)

For Argument Component Classification (ACC)
on DT_19 ¢, BERT-context (Lugini and Litman,
2020) and LLM-acc achieve 77.4 and 80.2 macro-
F; scores, respectively. This suggests that LLM is
not particularly better than BERT in classifying C,
E, and W when the correct ADUs are provided.
However, when we have to perform the full Ar-
gument Identification task from scratch, which in-
cludes ACD (segmentation) and ACC (classifica-
tion), we observe some performance gaps between
LLM and the BERT-BIO baseline. In terms of

®The two DT_19 corpora are slightly different as men-
tioned at the end of Section 5.1.
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token-level F; score (Table 10), both LLM ap-
proaches outperform BERT-BIO, suggesting that
utilizing the generative capability of LLM has ad-
vantages over sequence labeling with a transformer
like BERT. On one hand, it is not feasible to control
the tagging process of BERT-BIO at inference time.
As a result, there are cases in which it provides
more than one Claim, Evidence, or Warrant for a
turn, which violates the nature of the DT corpus
used for testing. On the other hand, we can restrict
the output of LLM approaches by giving the in-
structions in the prompts and few-shot examples,
which prevents them from violating the aforemen-
tioned data constraint. Thus, this can be one reason
for the inferior performance of BERT-BIO in terms
of word-level F; scores.

The score of the Beginning of a segment (B-
C/E/W) is always lower than the Inside counter-
parts (I-C/E/W), which implies that it is hard to
find the exact segmentation boundaries. However,
B-E has higher results compared to B-C and B-W,
demonstrating that the models are more effective at
finding the beginning of Evidence. We hypothesize
that certain words (e.g., ‘because’) can signal the
start of evidence, making it easier to detect when
students begin providing it. Among the C, E, and
W, W appears to be the most challenging class to
correctly identify, as the results of B-W and [-W
are lower than those of the other two. Furthermore,
LLM-refine significantly outperforms LLM-auto
in average weighted F; (p = 0.03), suggesting that
LLM is good at judging argument identification.

Figure 2 presents the proposed metric ACS@K
with various K. Similar to the average weighted
F; score (Table 10), LLM-refine beats LLM-auto
and BERT-BIO. While the results of LLM-auto and
LLM-refine are quite close, the BERT-BIO base-
line yields noticeably lower performance. The dis-
crepancies between BERT-BIO and the two LLM
models are also larger compared to Table 10. In
other words, LLM approaches are even more effec-
tive when evaluated on the argument component
level. When the argument is simplified (i.e., only
one C, E, and W), lacking control over the output
by treating the task as a sequence labeling task
(BERT-BIO) makes the argument identification re-
sults less desirable. In addition, LLM approaches
are more robust when the threshold K is varied.
We observe most increases in ACS@K score for
LLM approaches until about K = 40, after which
the curve remains more stable. Based on that obser-
vation, we hypothesize that LLMs might not be ef-

fective at finding exact segmentations, but are good
at identifying argument components in the correct
order. For example, assume the gold-standard la-
bels for the turn from left to right are C, E, and W.
If the model predicts a different order (e.g., E, C,
W), it is considered correct when K = 0. As we
increase K, that answer becomes incorrect because
the overlaps between text spans do not satisfy the
increased threshold. However, the graph shows
that there are no big differences between K = 40
and K = 0 for the LLM approaches. This implies
that the models get the argument components in the
correct order. Lowering K after 60 does not show
noticeably higher ACS@K scores, which further
implies that the predicted argument components
already have good overlap with the gold standard.

7 Conclusion

In this work, we experimented with LLMs in two
classroom discussion assessment tasks: turn-level
collaboration classification and end-to-end argu-
ment identification. The results show that LLMs
outperform the BERT baselines in both tasks. For
collaboration classification, we observe that dif-
ferent ways of formulating the task (binary versus
multi-class classification) have an impact on per-
formance, as the former yields better results. For
argument identification, instead of dividing the task
into two individual subtasks of ACD and ACC, we
utilize LLMs to perform text generation to solve
them simultaneously and achieve promising results.

Our results show that LLMs are robust under
ACS @K, indicating they capture the correct order
of argument components. Instruction following fur-
ther allows finer control over argument constraints
in LLMs, unlike sequence labeling with models
like BERT. Future work includes fine-tuning LLMs,
exploring diverse prompting strategies (e.g., Chain-
of-Thought (Wei et al., 2022), example-retrieval
(Wang et al., 2024), zero-shot methods), and apply-
ing these assessments downstream.
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Claim Evidence Warrant

De ye e

r N0 ANS N

Token :@ . [because] [Tolstoy]...[Christianity]. , .
E

BlOtag :B-C I-C I-C I-C -C I-C B-E I-E I I-E B-W I-W W W W W

Figure 1: Conversion to BIO format. Each token is tagged as X-Y, where X is either B (Beginning) or I (Inside),
and Y is either C (Claim), E (Evidence), or W (Warrant).

Code Definition
New Idea An initiating turn is the expression of a new idea in the discussion. This does not have to be a new topic, but
should be a new idea, concept, or perspective. It usually does not reference ideas in prior turns at talk, or it
does so only superficially. Turns that build on ideas in previous turns at talk are coded as “Extension”.
New student questions posed to the whole class that do not probe or question a previous answer are uncoded.
Extension A turn is an extension if it builds off another student’s ideas. Extension turns must extend one of the
preceding four codeable student turns unless a turn prior to those 4 is specifically referenced.
Extension turns include at least 2 key ideas or terms that were voiced by another student. Key ideas/terms
may be textual, topical or conceptual terms. Textual terms may include characters and places from a text
under discussion (like “Macbeth” or “Birnam Wood”), but do not include titles of texts. Topical terms may
include disciplinary topics (like theme, metaphor, symbol, etc.). Conceptual terms may include abstract
ideas (like “culture,” “domination,” “regret”).
Extensions sometimes (but not always) include terms like “also, another, too”; or indicators of agreemen-
t/alignment (such as, “like X said...”)
Extensions can also include a self extension which is a turn of talk that adds information to or re-words one’s
own idea that was shared without acknowledging the idea of other speakers in close proximity.
Challenge | Challenge turns challenge or question a prior idea. Challenges should reference another student’s turn in the
preceding four codeable student talk turns. Challenges to points made further back are considered “New
Ideas”.
A turn is considered a challenge if it includes both (1) keywords/concepts from previous turns (such as
“culture,” “domination,” or “regretful”) and (2) some indication of disagreement. Note that indications of
disagreement can be very subtle (such as “still” or “actually” or “he did tell his sister””) or more explicit (such
as “I disagree”, “No,” “but,” “however,” “though”).
A turn is considered a challenge if it challenges or requests more information, detail, elaboration, or
clarification/explanation in the form of a question (“Why do you think that?” “You really think Macbeth
wasn’t crazy?” or “What do you mean?”). Will often include second person pronoun or direct address. Does
not include procedural questions like “Wait what was his question?”.
Turns sometimes contain what may appear to be indications of disagreement (e.g., “however” “isn’t”) but are
actually referring to ideas within the turn—these would likely fall under the category of “Extension”.
Agreement | Turns that either express almost the exact thing in one of the preceding four coded student turns OR affirm
the previous statement with a short response like “yeah” or “I agree with what she said.”.
When a turn seems like it should be coded as an Extension but lacks two clear key terms or ideas, it is likely
to be coded as an Agreement.

Table 1: Definitions of the collaboration codes.

Code Definition
Claim An arguable statement that presents a particular interpretation of a text or topic.
DOES: often (but not always) precedes evidence and warrants. States something that can
more or less be contested—infers, predicts, hypothesizes, considers possibilities.
DOES NOT: simply recount details from text that are accessible to all readers (everyone
knows Macbeth became king)
Evidence | Talk used to support, justify, or back a claim.
DOES: includes facts, textual references, anecdotes. Often (but not always) follows a
claim. Always proximal to a claim (within 1 or 2 turns) .
DOES NOT: does not exist without a claim.
Warrant | Move that provides explanation for why evidence supports the claim.
DOES: Always proximal to evidence supporting a claim (almost always follows evidence).
DOES NOT: It rarely occurs before claim/ evidence that it is explaining.

Table 2: Definitions of the argumentation codes.
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Tarn

Speaker

Talk

Collaboration

Argumentation

St 22

I think it’s completely understandable, obviously because of
what happened on his father’s final day. But I feel like he
doesn’t deserve necessarily to feel guilty

because he was put through so much. Whenever you’re in
that situation, he’s been worn down so much and everything
has been taken from him. I feel like in that moment, he
couldn’t really think of anything he could do because he’s
already done so much, and so many people are telling him
like, “There’s nothing you can do.”

I don’t necessarily think he deserves to feel guilty, but I
understand why he would.

New Idea

Claim

Evidence

Warrant

St 20

I agree with St 22. He shouldn’t feel guilty because it’s not
his fault. But at the same time, you can’t control how you
feel. I guess, that’s it.

Agreement

Claim

Teacher

When he asked himself about, did he pass the test about Rabbi
Eliahu, do you guys think that he passed the test or he failed
the test, in your opinion?

St3

I can almost say he passed the test, in a sense.

But you have to consider that whatever his father thinks [...].
He never wanted to lose his father. He always tried to help
his father until the last moment. But then he was in shock. I
feel like in general, he passed the test.

New Idea

Claim

Evidence

W

St 6

Yeah

None

St 1

Sorry, go ahead

None

St6

Okay. I think a big difference between the rabbi and his son,
and Elie is that the rabbi’s son acted on it and he deliberately
did it. But Elie only had a subconscious thought about it and
he never really intended on acting on it. He still gave his
rations to him. He didn’t take him away. He still felt bad. He
tried to protect his father as best he could. He never really
wanted him to die. It was more something he thought in the
moment. Again, the cancer was getting to his head, too.

I think he passed his test. I don’t think it’s a big issue if you
just thought about it for a second.

Challenge

Claim

Warrant

St 1

Speaking on that note, someone mentioned talking about the
“Free at last” part. The way I interpret it personally was that I
thought that he felt his father was also free at last because he
didn’t have to deal with his suffering, which also shows that
he did pass the test.

New Idea

Claim

12

St 13

Yeah. I also think whenever Elie talks about his father being a
burden, it might not be he feels that his father coming around
with him, brings him down,

which I think it certainly does when he was thinking about
that on the run. But I think that going back to Robbie’s point,
I think that it also could mean burden of his father’s state and
how his father is probably going to die is probably a burden
on him mentally, as well as how his father is maybe making
his chance to death.

Extension

Claim

Evidence

Table 3: A sample transcript with annotations for students’ turns from DT_22 (T1.5.DT_2022.1.Night).
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DT_19 DT_22

Annotation
Count Percentage Count Percentage
New Idea 802 24.59% 1585 20.87%
Extension 1014 31.09% 2584 34.03%
Collaboration  Agreement 38 1.17% 177 2.33%
Challenge 271 8.31% 401 5.28%
None 1136 34.84% 2847 37.49%
Total 3261 100.00% 7594 100.00%
Claim 2054 6531% 4724 62.99%
Argumentation Evidence 764 24.29% 1922 25.63%
Warrant 327 10.40% 854 11.39%
Total 3145 100.00% 7500 100.00%

Table 4: Descriptive statistics of the two corpora: DT_19 and DT_22.

Approach Prompt
LLM-multi Below are the definitions of 4 collaboration classes: New Idea, Extension, Challenge, and Agreement.
# Definition of the 4 collaboration classes
New Idea: {Definition of New Idea}
Extension: {Definition of Extension}
Challenge: {Definition of Challenge}
Agreement: {Definition of Agreement}
You are given a 5-turn conversation in a multi-party classroom discussion. Using the provided definition,
your task is to classify the last turn into New Idea, Extension, Challenge, Agreement, or None if it does not
belong to the four mentioned classes.
# Example 1 {Example conversation 1}
Output (New Idea, Extension, Challenge, Agreement, or None): {gold standard answer}

# Example 10

{Example conversation 10}

Output (New Idea, Extension, Challenge, Agreement, or None): {gold standard answer}

# Your task

{5-turn conversation }

Output (New Idea, Extension, Challenge, Agreement, or None):

LLM-binary | Below are the definitions of 4 collaboration classes: New Idea, Extension, Challenge, and Agreement.

# Definition of the 4 collaboration classes

New Idea: {Definition of New Idea}

Extension: {Definition of Extension}

Challenge: {Definition of Challenge}

Agreement: {Definition of Agreement}

You are given a 5-turn conversation in a multi-party classroom discussion. Using the provided definitions,
your task is to identify if the last turn is { One targeted class (New Idea, Extension, Challenge, or Agreement)}.
Only answer yes or no.

# Example 1

{Example conversation 1}

Output (yes/no): {gold standard answer}

# Example 10

{Example conversation 10}

Output (yes/no): {gold standard answer}
# Your task

{5-turn conversation }

Output (yes/no):

Table 5: Prompts used for collaboration classification. {} is a placeholder. Definitions of collaboration classes are
from Table 1.
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Approach Prompt

All Below are the definitions of 3 argumentation classes: Claim, Evidence, and Warrant.

# Definition of the 3 argumentation classes

Claim: {Definition of Claim}

Evidence: {Definition of Evidence}

Warrant: {Definition of Warrant}

LLM-auto You are given a 5-turn conversation in a multi-party classroom discussion. Using the provided definitions,
your task is to segment the last turn into one or more of the following argumentation components: Claim,
Evidence, and Warrant. The segmentation must include at least one of these components, but it is not required
to include all three. Every word in the last turn must belong to one category. Format your output as follows:
Output

Claim: {}

Evidence: {}

Warrant: {}

# Example 1 (C)

{Example conversation 1}

Output

Claim: {gold standard claim}

Evidence: {gold standard evidence}

Warrant: {gold standard warrant}

# Example 10 (E, W, C)

{Example conversation 10 with gold standard output}

# Your task

{5-turn conversation }

Output

LLM-gen You are given a 5-turn conversation in a multi-party classroom discussion. Using the provided definitions,
your task is to segment the last turn into {one specific combination of Claim, Evidence, and Warrant}. Every
word in the last turn must belong to one category. Format your output as follows:

Output

(Optional) Claim: {}

(Optional) Evidence: {}

(Optional) Warrant: {}

# Example 1 {one specific combination of Claim, Evidence, and Warrant}

{Example conversation 1}

Output

(Optional) Claim: {gold standard claim}

(Optional) Evidence: {gold standard evidence}

(Optional) Warrant: {gold standard warrant}

# Example 10

{Example conversation 10 with gold standard output}

# Your task

{5-turn conversation}

Output

LLM-judge | You are given a 5-turn conversation in a multi-party classroom discussion and different ways to segment the
last turn to Claim, Evidence, and Warrant based on the provided definitions. Your task is to pick the most
reasonable segmentation. Answer only one number between 1 and 6.

Options:

1. {(C) segmentation}

2. {(E) segmentation}

6. {(C, E, W) segmentation }

The best option is (a number between 1 and 6):

LLM-acc You are given a 5-turn conversation in a multi-party classroom discussion. Using the provided definition,
your task is to classify the last turn into Claim, Evidence, or Warrant.
# Example 1

{Example conversation 1}

Output (Claim, Evidence, or Warrant): {gold standard answer}

... # Example 10

{Example conversation 10 with gold standard answer}

# Your task

{5-turn conversation }

Output (Claim, Evidence, or Warrant):

Table 6: Prompts used for argument identification. {} is a placeholder. Definitions of argumentation classes are
from Table 2. All approaches share the first row to provide the definitions of the classes to the LLM.
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Model DT_19 DT_22

Arg vs Non-arg | All 5 labels | Arg vs Non-arg | All 5 labels
BERT 79.6 65.9 79.1 66.8
LLM-multi 80.1 69.1% 80.5 69.9*
LLM-binary 84.1 73.7* 86.1* 73.5*

Table 7: Macro (unweighted) F; scores of the Collaboration classification task on the two DT corpora. Bold numbers
highlight the best results. * means the number is statistically significant compared to its counterpart in the BERT
baseline (p < 0.05) based on a Wilcoxon signed-rank test.

Model DT_19 | DT_22
BERT 62.3 62.8

LLM-multi 65.5* 68.2*
LLM-binary | 69.8* 70.2*

Table 8: Cohen’s kappa of the Collaboration classification task on the two DT corpora on all 5 labels. Bold numbers
highlight the best results. * means the number is statistically significant compared to its counterpart in the BERT
baseline (p < 0.05) based on a Wilcoxon signed-rank test.

Label DT_19 DT_22
BERT LLM-multi LLM-binary | BERT LLM-multi LLM-binary

New Idea 58.2 61.3* 65.8* 57.1 61.2* 64.2*
Extension 67.3 74.7* 79.1* 68.7 74.1* 79.9*
Challenge 60.5 62.4* 66.7* 57.3 60.7* 65.1*
Agreement 70.1 71.5 79.6* 73.0 72.3 78.3*
None 73.4 75.6 77.3* 78.1 81.3* 80.1
Weighted F; | 67.3 71.3* 75.1% 69.8 73.7* 76.3*

Table 9: F,; score for each collaboration class on DT_19 and DT_22 data. * means the number is statistically
significant compared to its counterpart in the BERT model based on a Wilcoxon signed-rank test. Bold numbers
highlight the best results for each label per dataset.

Model B-C I-C B-E I-E B-W I-W | Weighted F,
BERT-BIO | 61.5 732 683 757 606 693 68.6
LLM-auto | 664 812 702 812 643 734 71.4
LLM-refine | 67.3 83.1 719 854 623 763 73.3

Table 10: Per-label F; scores and average weighted F; scores of the argument identification task on DT_22. The
labels are B/I-Arg, where B/I represents Beginning/Inside and Arg represents one of the three classes: Claim
(C), Evidence (E), Warrant (W). Bold numbers show the best results for each label. All numbers are statistically
significant compared to their counterparts in the BERT-BIO (p < 0.05), as determined by a Wilcoxon signed-rank

test.
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