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Abstract 

Large-scale assessments rely on expert 

panels to verify that test items align with 

prescribed frameworks, a labor-intensive 

process. This study evaluates the use of 

GPT-4o to classify TIMSS items to content 

domain, cognitive domain, and difficulty 

categories. Findings highlight the potential 

of language models to support scalable, 

framework-aligned item verification.  

1 Introduction 

International large-scale assessments such as the 

Trends in International Mathematics and Science 

Study (TIMSS) play a critical role in monitoring 

educational outcomes across diverse systems. The 

validity argument of such assessments lies in the 

rigorous alignment of test items with the 

underlying assessment framework, which defines 

key content and cognitive domains that the 

assessment purports to measure. TIMSS 

assessment development is guided by the 

principles of Evidence-Centered Design (Mislevy 

et al., 2003), ensuring that each item serves as 

meaningful evidence for the targeted constructs. 

This process involves multiple rounds of expert 

review and collaboration with participating 

countries to verify item alignment and maintain the 

validity of measurement across contexts.  

While effective, this expert-driven validation 

process is labor-intensive and time-consuming, 

particularly in the context of ongoing item 

development and reuse. As AI technologies 

continue to evolve, they offer new ways for 

automating or supporting some of these processes. 

One such approach is the use of large language 

models (LLMs) for automated item classification. 

If reliable, these tools could significantly reduce 

the burden on subject matter experts, streamline 

assessment development cycles, and enhance 

scalability without compromising psychometric 

quality.  

This study explores the potential of GPT-4o to 

perform classification of TIMSS 2019 mathematics 

items. Specifically, we evaluate the model’s ability 

to assign items to their appropriate content domain, 

cognitive domain, and difficulty level, based on the 

given TIMSS assessment framework. The items 

have already been reviewed and validated by 

expert panels and are used operationally, their 

classifications can be considered reliable 

benchmarks. 

To assess alignment, AI-generated 

classifications are compared against expert-coded 

categories, analyzing agreement patterns and 

identifying systematic divergences. For difficulty, 

we define three difficulty regions using percent 

correct values derived from empirical item 

performance data and evaluate the model’s 

capacity to approximate these classifications. The 

findings of this study contribute to ongoing 

discussions about the role of AI in assessment 

development and offer preliminary evidence on the 

feasibility of LLMs as tools to support item 

verification within established assessment 

frameworks. 

2 Background 

Construct validity has long been a central concern 

in educational assessment, particularly in 

international large-scale assessments such as 

TIMSS. A key aspect of evidence for validity is the 

alignment between test items and the assessment 

framework, that is the extent to which each item’s 
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content and cognitive demands reflect the intended 

constructs of the study. Alignment in the context of 

ILSAs supports meaningful score interpretation, 

facilitates cross-national comparability, and 

provides assurance that assessment inferences are 

based on systematically defined learning goals. 

This also helps minimize the construct irrelevant 

variances.  

Foundational work on test design and validity, such 

as Messick’s (1990) unified validity framework 

and ECD of Mislevy et al. (2003), emphasizes that 

the validity argument must include an explicit 

evidentiary chain connecting item features to well-

articulated domain models. Alignment research is 

one way to establish this chain by evaluating the 

connection between testing, content standards, and 

instruction. If these components work together to 

deliver a consistent message about what should be 

taught and assessed, students will have the 

opportunity to learn and to truly demonstrate what 

they have achieved (Martone & Sireci, 2009). 

Systematic alignment studies therefore provide 

critical priori evidence that the assessment 

operationalizes its framework as intended, thereby 

supporting the overall construct-validity argument. 

In the context of TIMSS, alignment involves a 

multistep process where items are reviewed, 

refined, and approved by subject matter experts, 

ensuring they adhere to content domains, cognitive 

processes and intended difficulty levels. While this 

process is foundational to the psychometric 

integrity of the assessment, it is also resource-

intensive and difficult to scale given growing item 

pools and evolving frameworks.  

To address these challenges, researchers have 

explored the use of computational methods to 

support or automate parts of the alignment process. 

Advances in natural language processing (NLP) 

have opened new possibilities for supporting 

alignment through semantic analysis of item texts. 

Recent studies (e.g., Butterfuss & Doran, 2024; 

Camilli, 2024; Camili & Suter, 2024) have 

demonstrated that embedding-based similarity 

metrics can successfully identify meaningful 

relationships between standards and item 

specifications. Such methods have been used in 

alignment studies involving the Common Core 

State Standards and NAEP, showing that NLP 

techniques can reproduce many expert 

classifications through clustering or regression 

models. While promising, these approaches often 

rely on static sentence embeddings and do not fully 

capture the contextual reasoning that human 

experts employ when classifying items. 

Building on this prior work, the current study 

investigates the use of a large language model, 

GPT-4o, to perform classification of TIMSS 

mathematics items in alignment with the given 

TIMSS framework. By incorporating the full 

descriptive language of the framework into the 

prompt through a structured prompt engineering 

approach that dynamically loads framework 

specifications from a framework focused database, 

this method allows complete content domain 

descriptions, cognitive skill definitions, and 

difficulty level characteristics specific to each 

TIMSS assessment year and grade level. Unlike 

previous efforts that focus on pairwise similarity, 

this dynamic framework-informed prompting 

strategy offers a scalable, interpretable, and 

multidimensional approach to item classification, 

potentially streamlining alignment procedures 

while preserving the integrity of the assessment 

development process. 

3 Methods 

3.1 Data Source 

This study uses a sample of mathematics items 

from TIMSS 2019 for Grade 4 and Grade 8 

assessments. All selected items were previously 

reviewed and validated by expert panels convened 

by TIMSS and PIRLS International Study Center 

and successfully field tested. Each item includes a 

final assigned content domain, cognitive domain, 

and empirical difficulty estimate based on percent 

correct values from operational test data.  

The study includes all newly developed items 

introduced in the TIMSS 2019 cycle. For items 

containing images, diagrams, or graphs, the GPT-

4o model via the OpenAI API was used to generate 

descriptive captions, allowing for the full item set 

to be processed in text-based analyses. In each 

TIMSS cycle items are selected to ensure coverage 

across a range of content topics (e.g., number, 

algebra, life science), cognitive domains (knowing, 

applying, reasoning), and difficulty levels. The 

complete dataset initially consisted of 286 items. 

However, items split into multiple parts (e.g., a, b, 

c sub-items) were excluded from the classification 

analysis to avoid duplication and ensure 

consistency in unit of analysis. After this filtering, 

the final analytic sample comprised 217 items. 
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Table A1 shows the item distribution by each 

category in Appendix A.  

3.2 Framework Representation and Prompt 

Design 

To support classification by the language model, 

we constructed structured prompts embedding full 

descriptions of TIMSS framework dimensions. 

TIMSS 2019 Assessment Framework (Mullis & 

Martin, 2017) served as a primary source for 

content domain definitions, cognitive domain 

descriptions, and difficulty-level guidance. 

A custom framework database was built utilizing 

PDF descriptions of the frameworks to 

dynamically retrieve definitions relevant to the 

grade level and subject of each item. Prompts 

followed a template-based structure that presented: 

• The item content 

• The TIMSS subject, grade level, and year 

• Full framework definitions for the content 

domains 

• Full framework definitions for the three 

cognitive domains 

• Empirical guidance for difficulty 

classification 

An example of the prompt is given in Figure A1 in 

Appendix A.  

In addition to aligning with the official TIMSS 

framework, this study examined how prompt 

design strategies influence the language model’s 

classification performance across three target 

dimensions: content domain, cognitive domain, 

and difficulty level. 

Recent advances in natural language prompting 

have shown that model performance can be 

improved by structuring reasoning and task 

representation within the prompt itself. Two key 

strategies examined in this study are Chain-of-

Thought (CoT) prompting and meta-prompting. 

CoT prompting encourages the model to generate 

step-by-step reasoning before producing a final 

answer, supporting tasks that involve multi-step 

inference or abstract judgment (Wei et al., 2022). 

This approach is particularly relevant for 

educational item classification tasks, where 

judgments such as cognitive demand and difficulty 

are often nuanced and require the model to simulate 

student and/or expert thinking. 

Building on this, meta-prompting involves 

instructing the model on how to perform the task 

itself by embedding structured guidelines directly 

into the prompt (Reynolds & McDonell, 2021; 

OpenAI, 2024). In more advanced forms, meta-

prompts may enable models to critique or revise 

their own instructions or those provided by users 

(Ye et al., 2023). Recent work has further enhanced 

this approach by labeling individual reasoning 

steps and implementing step-aware verifiers, 

which assess each step’s contribution to the final 

decision (Li et al., 2023). 

To evaluate the influence of prompt structure on 

classification performance, the study implemented 

four prompt conditions shown in Table 1.  

3.3 Model and Classification Procedure 

We used GPT-4o, accessed via OpenAI’s API, as 

the large language model for classification. Each 

item prompt was submitted independently, and the 

model’s textual response was parsed to extract 

predicted content domain, cognitive domain, and 

difficulty level. A post-processing script was 

applied to standardize terminology and correct 

minor inconsistencies such as the content domain 

in grade 4 is ‘Measurement and Geometry’ but the 

model specified the items as ‘Geometry’ or 

‘Measurement’, those were counted as 

‘Measurement and Geometry’.  

The classification process was fully 

unsupervised; no labeled training data or fine-

tuning was used. All responses were generated 

using temperature = 0 to maximize determinism 

and reproducibility. 

Model performance was evaluated by 

comparing model’s predicted content and cognitive 

domain classifications to expert-assigned labels. 

Content and cognitive domain accuracies reflect 

Condition Description Examples CoT 

Zero-shot 

(ZS) 

Framework 

definitions + 

item only 

None No 

Zero-shot 

CoT (ZS-

CoT) 

Adds “Think 

step by step” 

instruction 

None Yes 

Few-shot 

(FS) 

Adds one 

example per 

cognitive × 

difficulty cell  

9-10 No 

Few-shot 

CoT (FS-

CoT) 

Adds one 

example per 

cognitive × 

difficulty cell 

and CoT 

reasoning 

9-10 Yes 

Table 1:  Prompting Conditions 
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the proportion of exact matches between the 

model’s predictions and the official domain labels.  

Difficulty classification was evaluated against 

empirical difficulty levels derived from operational 

data. Specifically, items were categorized as Easy, 

Medium, or Hard based on their percent-correct 

values, using Easy (>60%), Medium (30-60%), 

and Hard (<30%). The model’s predicted difficulty 

level was considered correct if it matched the 

empirically derived category for each item. 

Cohen’s kappa coefficients were also calculated to 

account for chance agreement. Additionally, 

misclassifications were analyzed qualitatively to 

identify systematic patterns of divergence. 

4 Results  

Classification Performance 

Classification performance across prompting 

conditions is summarized in Table 2. Content 

domain classification demonstrated consistently 

high performance, with all prompting conditions 

exceeding 94% accuracy and kappa values above 

0.92, indicating substantial agreement beyond 

chance. FS-CoT achieved the highest accuracy 

(94.9%) and kappa (0.933), reflecting the model’s 

strong ability to differentiate TIMSS content 

domains. In contrast, classification accuracy for the 

cognitive domain showed more variation, ranging 

from 60.4% to 64.1% and kappa values between 

0.382 and 0.438. The FS-CoT condition yielded the 

highest accuracy, followed by ZS baseline and FS. 

Kappa values across these conditions suggest fair 

to moderate agreement with expert labels, 

indicating that while the model captures 

meaningful cognitive distinctions, it does so with 

less precision than in the content domain. 

Difficulty classification, while the most 

challenging of the three dimensions, showed 

improvement over previous iterations. Accuracy 

scores ranged from 44.2% to 49.8%, and all 

conditions resulted in positive kappa values, 

indicating better-than-chance agreement. ZS-CoT 

led in both accuracy and agreement, though overall 

performance remained modest, highlighting the 

inherent complexity of predicting empirically 

derived difficulty levels. Grade level analysis 

revealed consistently stronger model performance 

for Grade 4 items across all classification 

dimensions. For content domain classification, 

Grade 4 items achieved exceptional accuracy 

scores ranging from 96.9% to 97.7%. Grade 8 

content domain performance, while lower, 

remained strong with accuracy scores from 91.0% 

to 92.3%. A similar pattern was also observed in 

cognitive domain classification. Grade 4 accuracy 

ranged from 62.6% to 65.0%, while grade 8 

performance varied from 57.4% to 62.8%. Notably, 

the FS-CoT condition achieved the smallest grade-

level gap in cognitive domain performance (65.0% 

vs. 62.8%). For difficulty classification, Grade 4 

items consistently outperformed Grade 8 items 

across all conditions. Grade 4 difficulty accuracy 

ranged from 50.4% to 57.7%, with ZS-CoT 

achieving the highest Grade 4 performance 

(57.7%). Grade 8 difficulty classification proved 

more challenging, with accuracy scores ranging 

from 33.0% to 40.4%, with FS-CoT achieving the 

best Grade 8 performance (40.4%). 

 

 

Classification Patterns and Systematic Errors 

Given its overall better performance across all 

three classification dimensions, the FS-CoT 

condition was selected for detailed confusion 

matrix analysis to understand specific 

classification patterns and systematic errors.    

For the content domain classification, the model 

achieved near perfect classifications, but specific 

patterns emerged when analyzed by grade level 

(Appendix A Figures A2-A3). For Grade 4 

mathematics, the model achieved perfect 

classification for Data and Number domains but 

showed some boundary confusion with 

Measurement and Geometry items. Specifically, 

12% of Measurement and Geometry items were 

Prompt  
Content 

Domain 

Cognitive 

Domain 

Difficulty 

Level 

 Acc κ Acc κ Acc κ 

ZS 94.1 0.922 62.2 0.410 44.2 0.072 

ZS 

CoT 
94.2 0.923 60.4 0.382 49.8 0.134 

 FS 94.1 0.923 61.3 0.397 44.7 0.074 

FS 

CoT 
94.4 0.930 64.1 0.438 48.4 0.097 

Table 2:  Classification Performance 
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misclassified as both Data and Number domains, 

suggesting overlapping conceptual features in 

items involving spatial reasoning and numerical 

computation. For Grade 8, content domain 

classification revealed different boundary 

challenges. While Algebra, Data and Probability, 

and Geometry domains were classified perfectly, 

Number domain items showed notable confusion 

(75%). The primary misclassification pattern 

involved 21% of these items being classified as 

Algebra, with an additional 4% classified as 

Geometry. This pattern suggests that model 

struggles with the increasing integration of 

algebraic thinking into numerical context in the 

higher grades. 

As shown in Figure A4, the FS-CoT model 

exhibited a strong bias toward predicting the 

Applying domain. While Applying items were 

accurately classified 84% of the time, it also 

attracted most misclassifications receiving 45% of 

Knowing and 44% of Reasoning items. Reasoning 

accuracy was moderate (53%) but showed 

substantial confusion with Applying. Very few 

items were confused between Knowing and 

Reasoning, indicating the model can generally 

distinguish between higher-order and basic 

cognitive demands but struggles to differentiate 

between applying procedures and engaging in 

mathematical reasoning.  

Difficulty classification remained the most 

challenging task for the model, with a strong 

tendency toward underestimation (Figure A5 in 

Appendix A). Easy items were correctly classified 

64% of the time and no easy items were 

misclassified as Hard, indicating a cautious 

estimation pattern. Medium items had 71% 

accuracy, with 26% underestimated as Easy and 

only 3% overestimated as Hard. This suggests the 

model treats difficulty as a binary decision Easy 

versus Not Easy rather than effectively 

distinguishing all three levels. If we collapse the 

difficulty to this more pragmatic Easy vs. not Easy 

decision, the accuracy jumped to 0.78.  Hard items 

were the most frequently misclassified. This 

reflects a consistent failure to recognize complex 

mathematical or cognitive demands, particularly 

when such items are concise or lack surface-level 

cues of difficulty. 

 

Linguistic Features of Misclassified Items 

To better understand the systematic errors in 

difficulty classification, we examined surface 

features of misclassified items as shown in Table 3. 

We focused on textual length, numerical content, 

and mathematical language.  

Misclassified Easy items had the highest 

average word count (76.8) and character length 

(561.4) substantially longer than misclassified  

Medium (50.0 words, 338.9 characters) and Hard 

items (66.1 words, 404.5 characters). This suggests 

the model tends to get confused by textual 

elaboration with cognitive difficulty, 

overestimating the challenge of otherwise 

straightforward tasks. Conversely, Hard items, 

though shorter, were rich in mathematical content. 

They contained the highest density of 

mathematical operations (1.31 per item) and 

reasoning verbs (0.34 per item) yet were 

overwhelmingly misclassified as Medium. This 

indicates that while GPT-4o detects complexity, it 

fails to properly weight them in difficulty 

estimation, especially when such cues are 

embedded in concise text. 

5 Conclusion 

This study evaluated the potential of GPT-4o to 

perform automated classification of TIMSS 

mathematics items. Using a dynamic, framework-

aware prompting strategy, we challenged the model 

to assign Grade 4 and Grade 8 mathematics items 

to their official content domain, cognitive domain, 

and difficulty categories without any fine-tuning or 

labeled training data.  

Across all prompting conditions, model 

consistently provided high agreement with content-

domain classifications with about 95% accuracy ( 

𝜅  > 0.92), and confusion matrices only showed 

 Easy Medium Hard 

Word count 76.8 49.9 66.1 

Character 

count 

561.4 338.9 404.5 

Reasoning 

Verb count 

0.20 0.09 0.34 

Number 

count 

19.10 12.29 10.74 

Operations 

count 

0.40 1.12 1.31 

Table 3: Average Surface Features of 

Misclassified Items 
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minimal boundary issues. These results suggest 

that content domain classification is one area where 

the model can be deployed with confidence.  

Model accuracy for cognitive domain 

classifications clustered around 62% (𝜅  ~ 0.41). 

This level of agreement is consistent with prior 

research, including Nasstrom (2009), who reported 

moderate inter-rater reliability ( 𝜅 ~ 0.41–0.47) 

among experts classifying items according to 

Bloom’s taxonomy. Similarly, Karpen and Welch 

(2016) found only 46% agreement among faculty 

when categorizing exam questions by cognitive 

demand. While performance improved modestly 

under the FS-CoT prompting condition, error 

analysis revealed a systematic tendency to 

overclassify items into the Applying category, a 

middle category bias. This highlights a clear 

opportunity for targeted prompt engineering or 

probability calibration strategies. 

Model performance was weakest for the three-

level difficulty classification task, with accuracy 

around 49%. However, reframing the task as a 

binary classification, Easy versus Not Easy, yielded 

78% accuracy. This is particularly notable given 

that prior research demonstrated limited alignment 

between expert predictions of item difficulty and 

examinee performance (e.g., Bejar, 1983; Mansoor, 

2024; Wonde, 2024) with accuracy rates hovering 

around 50-55% even after targeted expert training 

(Sayin & Bulut, 2024). Moreover, Clauser et al. 

(2009) demonstrated that physicians involved in 

Angoff standard setting frequently revised their 

difficulty estimates to align with whichever 

performance statistics were presented to them, 

regardless of their accuracy, highlighting the 

inherent instability of human judgements. Taken 

together, these findings show that unsupervised 

binary screening already matches or in some cases 

exceeds typical human baselines.  

Given this, the model could serve as a first-pass 

filter content tagging and binary difficulty 

screening could reduce the number of items 

requiring full panel review, freeing experts time to 

focus on distractor quality, fairness checks, and 

cross-cultural comparability. In addition, because 

framework definitions are pulled dynamically the 

same pipeline can be applied to other TIMSS 

cycles or entirely different frameworks (e.g., 

NAEP, PISA) with minimal revision.  

This study has potential limitations. First, the 

study focused exclusively on mathematics items 

from the 2019 TIMSS cycle; generalizability to 

science items, earlier cycles, or AI-generated 

content remains to be investigated. Second, all 

analyses were conducted using text-only 

representations of items thus visual components 

such as graphs or diagrams were reduced to 

captions, which may have affected the model’s 

judgments. Future studies incorporating 

multimodal inputs may offer a more accurate 

reflection of the item’s full content and complexity. 

Third, item difficulty levels were defined based on 

fixed percent-correct thresholds. Future research 

can consider using IRT-based difficulty estimates 

or continuous difficulty prediction using fine-tuned 

LLMs. 

 Overall, this study shows that GPT-4o, when 

directed with a targeted prompting strategy, can act 

as a reliable co-reviewer in the early stages of test 

development. While current results are strongest 

for content classification, meaningful performance 

in cognitive and difficulty domains, with 

interpretable error patterns, suggests a promising 

role for AI in supporting expert workflows. Rather 

than aiming to replace human expertise, these tools 

are best positioned to augment it by reducing 

workload and improving the speed and consistency 

of assessment development.  
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Grade 
Category 

Type  

Category Count 

 

 

 

 

 

 

 

4 

 

 

Cognitive 

Domain 

Applying 72 

Knowing 53 

Reasoning 39 

 

Content 

Domain 

Data 60 

Measurement 

and Geometry 
50 

Number 54 

 

 

Difficulty 

Easy 43 

Medium 87 

Hard 34 

 

 

 

 

 

 

 

8 

 

 

 

Cognitive 

Domain 

Applying 54 

Knowing 41 

Reasoning 27 

 

Content 

Domain 

Algebra 35 

Data and 

Probability 
26 

Geometry 26 

Number 35 

 

 

Difficulty 

Easy 14 

Medium 56 

Hard 52 

Table A1: Item Distribution Across Categories 
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Act as an expert specializing in the TIMSS 
assessment framework.    Your task is to simulate how 
students interact with a {subject_name} item, diagnose 
its cognitive demand, and judge its difficulty level from 
both an expert and a student perspective. 

Analyze the given TIMSS Grade {grade} 
{subject_name} assessment item. 

Classify this item according to the TIMSS {year} 
{subject_name} Framework. Use these three 
categories: 

1. **Content Domain**: Select the main content 
domain from this list (use the exact name): 

    {content_domains_text} 
2. **Cognitive Domain**: Identify the main 

cognitive domain (choose exactly one: Knowing, 
Applying, Reasoning): 

    {cognitive_domains_text} 
3. **Difficulty Level**: Indicate the item's difficulty 

(Easy / Medium / Hard), based not only on typical 
student success rates but also on complexity, required 
reasoning, potential misconceptions, distractor 
strength, and student accessibility: 

    {difficulty_text} 

 

 

 

Figure A1: Prompt Structure – Zero Shot 

 

Figure A5: Difficulty Confusion Matrix 

 
 Figure A4: Cognitive Domain Confusion 

Matrix 

 

Figure A2: Grade 4 Content Domain Confusion 

Matrix 

 
Figure A3: Grade 8 Content Domain Confusion 

Matrix 
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