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Abstract

Large-scale assessments rely on expert
panels to verify that test items align with
prescribed frameworks, a labor-intensive
process. This study evaluates the use of
GPT-4o to classify TIMSS items to content
domain, cognitive domain, and difficulty
categories. Findings highlight the potential
of language models to support scalable,
framework-aligned item verification.

1 Introduction

International large-scale assessments such as the
Trends in International Mathematics and Science
Study (TIMSS) play a critical role in monitoring
educational outcomes across diverse systems. The
validity argument of such assessments lies in the
rigorous alignment of test items with the
underlying assessment framework, which defines
key content and cognitive domains that the
assessment purports to measure. TIMSS
assessment development is guided by the
principles of Evidence-Centered Design (Mislevy
et al., 2003), ensuring that each item serves as
meaningful evidence for the targeted constructs.
This process involves multiple rounds of expert
review and collaboration with participating
countries to verify item alignment and maintain the
validity of measurement across contexts.

While effective, this expert-driven validation
process is labor-intensive and time-consuming,
particularly in the context of ongoing item
development and reuse. As Al technologies
continue to evolve, they offer new ways for
automating or supporting some of these processes.
One such approach is the use of large language
models (LLMs) for automated item classification.

If reliable, these tools could significantly reduce
the burden on subject matter experts, streamline
assessment development cycles, and enhance
scalability without compromising psychometric
quality.

This study explores the potential of GPT-40 to
perform classification of TIMSS 2019 mathematics
items. Specifically, we evaluate the model’s ability
to assign items to their appropriate content domain,
cognitive domain, and difficulty level, based on the
given TIMSS assessment framework. The items
have already been reviewed and validated by
expert panels and are used operationally, their

classifications can be considered reliable
benchmarks.
To assess alignment, Al-generated

classifications are compared against expert-coded
categories, analyzing agreement patterns and
identifying systematic divergences. For difficulty,
we define three difficulty regions using percent
correct values derived from empirical item
performance data and evaluate the model’s
capacity to approximate these classifications. The
findings of this study contribute to ongoing
discussions about the role of Al in assessment
development and offer preliminary evidence on the
feasibility of LLMs as tools to support item
verification ~ within  established assessment
frameworks.

2 Background

Construct validity has long been a central concern
in educational assessment, particularly in
international large-scale assessments such as
TIMSS. A key aspect of evidence for validity is the
alignment between test items and the assessment
framework, that is the extent to which each item’s
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content and cognitive demands reflect the intended
constructs of the study. Alignment in the context of
ILSAs supports meaningful score interpretation,
facilitates  cross-national comparability, and
provides assurance that assessment inferences are
based on systematically defined learning goals.
This also helps minimize the construct irrelevant
variances.

Foundational work on test design and validity, such
as Messick’s (1990) unified validity framework
and ECD of Mislevy et al. (2003), emphasizes that
the validity argument must include an explicit
evidentiary chain connecting item features to well-
articulated domain models. Alignment research is
one way to establish this chain by evaluating the
connection between testing, content standards, and
instruction. If these components work together to
deliver a consistent message about what should be
taught and assessed, students will have the
opportunity to learn and to truly demonstrate what
they have achieved (Martone & Sireci, 2009).
Systematic alignment studies therefore provide
critical priori evidence that the assessment
operationalizes its framework as intended, thereby
supporting the overall construct-validity argument.

In the context of TIMSS, alignment involves a
multistep process where items are reviewed,
refined, and approved by subject matter experts,
ensuring they adhere to content domains, cognitive
processes and intended difficulty levels. While this
process is foundational to the psychometric
integrity of the assessment, it is also resource-
intensive and difficult to scale given growing item
pools and evolving frameworks.

To address these challenges, researchers have
explored the use of computational methods to
support or automate parts of the alignment process.
Advances in natural language processing (NLP)
have opened new possibilities for supporting
alignment through semantic analysis of item texts.
Recent studies (e.g., Butterfuss & Doran, 2024;
Camilli, 2024; Camili & Suter, 2024) have
demonstrated that embedding-based similarity
metrics can successfully identify meaningful
relationships  between standards and item
specifications. Such methods have been used in
alignment studies involving the Common Core
State Standards and NAEP, showing that NLP
techniques can reproduce many  expert
classifications through clustering or regression
models. While promising, these approaches often
rely on static sentence embeddings and do not fully

capture the contextual reasoning that human
experts employ when classifying items.

Building on this prior work, the current study
investigates the use of a large language model,
GPT-40, to perform classification of TIMSS
mathematics items in alignment with the given
TIMSS framework. By incorporating the full
descriptive language of the framework into the
prompt through a structured prompt engineering
approach that dynamically loads framework
specifications from a framework focused database,
this method allows complete content domain
descriptions, cognitive skill definitions, and
difficulty level characteristics specific to each
TIMSS assessment year and grade level. Unlike
previous efforts that focus on pairwise similarity,
this dynamic framework-informed prompting
strategy offers a scalable, interpretable, and
multidimensional approach to item classification,
potentially streamlining alignment procedures
while preserving the integrity of the assessment
development process.

3 Methods

3.1 Data Source

This study uses a sample of mathematics items
from TIMSS 2019 for Grade 4 and Grade 8
assessments. All selected items were previously
reviewed and validated by expert panels convened
by TIMSS and PIRLS International Study Center
and successfully field tested. Each item includes a
final assigned content domain, cognitive domain,
and empirical difficulty estimate based on percent
correct values from operational test data.

The study includes all newly developed items
introduced in the TIMSS 2019 cycle. For items
containing images, diagrams, or graphs, the GPT-
40 model via the OpenAl API was used to generate
descriptive captions, allowing for the full item set
to be processed in text-based analyses. In each
TIMSS cycle items are selected to ensure coverage
across a range of content topics (e.g., number,
algebra, life science), cognitive domains (knowing,
applying, reasoning), and difficulty levels. The
complete dataset initially consisted of 286 items.
However, items split into multiple parts (e.g., a, b,
¢ sub-items) were excluded from the classification
analysis to avoid duplication and ensure
consistency in unit of analysis. After this filtering,
the final analytic sample comprised 217 items.

135



Table Al shows the item distribution by each
category in Appendix A.

3.2 Framework Representation and Prompt
Design

To support classification by the language model,
we constructed structured prompts embedding full
descriptions of TIMSS framework dimensions.
TIMSS 2019 Assessment Framework (Mullis &
Martin, 2017) served as a primary source for
content domain definitions, cognitive domain
descriptions, and difficulty-level guidance.

A custom framework database was built utilizing

Condition Description Examples CoT
Framework
Zero-shot definitions + None No
zS) .
item only
Zero-shot Adds “Think
CoT (ZS- step by step” None Yes
CoT) instruction
Adds one
Few-shot example per
(FS) cognitive x 9-10 No
difficulty cell
Adds one
Few-shot iﬁgﬁﬁii 5 ir
C"CTO(TF)S' difficulty cell 9-10 Yes
and CoT
reasoning

Table 1: Prompting Conditions

PDF descriptions of the frameworks to
dynamically retrieve definitions relevant to the
grade level and subject of each item. Prompts
followed a template-based structure that presented:
e The item content
e The TIMSS subject, grade level, and year
e Full framework definitions for the content
domains
e Full framework definitions for the three
cognitive domains

e Empirical guidance for difficulty
classification
An example of the prompt is given in Figure A1l in
Appendix A.

In addition to aligning with the official TIMSS
framework, this study examined how prompt
design strategies influence the language model’s
classification performance across three target
dimensions: content domain, cognitive domain,
and difficulty level.

Recent advances in natural language prompting
have shown that model performance can be

improved by structuring reasoning and task
representation within the prompt itself. Two key
strategies examined in this study are Chain-of-
Thought (CoT) prompting and meta-prompting.
CoT prompting encourages the model to generate
step-by-step reasoning before producing a final
answer, supporting tasks that involve multi-step
inference or abstract judgment (Wei et al., 2022).
This approach is particularly relevant for
educational item classification tasks, where
judgments such as cognitive demand and difficulty
are often nuanced and require the model to simulate
student and/or expert thinking.

Building on this, meta-prompting involves
instructing the model on how to perform the task
itself by embedding structured guidelines directly
into the prompt (Reynolds & McDonell, 2021;
OpenAl, 2024). In more advanced forms, meta-
prompts may enable models to critique or revise
their own instructions or those provided by users
(Ye et al., 2023). Recent work has further enhanced
this approach by labeling individual reasoning
steps and implementing step-aware verifiers,
which assess each step’s contribution to the final
decision (Li et al., 2023).

To evaluate the influence of prompt structure on
classification performance, the study implemented
four prompt conditions shown in Table 1.

3.3 Model and Classification Procedure

We used GPT-40, accessed via OpenAl’s API, as
the large language model for classification. Each
item prompt was submitted independently, and the
model’s textual response was parsed to extract
predicted content domain, cognitive domain, and
difficulty level. A post-processing script was
applied to standardize terminology and correct
minor inconsistencies such as the content domain
in grade 4 is ‘Measurement and Geometry’ but the
model specified the items as ‘Geometry’ or
‘Measurement’, those were counted as
‘Measurement and Geometry’.

The classification process was fully
unsupervised; no labeled training data or fine-
tuning was used. All responses were generated
using temperature = 0 to maximize determinism
and reproducibility.

Model performance was evaluated by
comparing model’s predicted content and cognitive
domain classifications to expert-assigned labels.
Content and cognitive domain accuracies reflect
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the proportion of exact matches between the
model’s predictions and the official domain labels.
Difficulty classification was evaluated against
empirical difficulty levels derived from operational
data. Specifically, items were categorized as Easy,
Medium, or Hard based on their percent-correct
values, using Easy (>60%), Medium (30-60%),
and Hard (<30%). The model’s predicted difficulty
level was considered correct if it matched the
empirically derived category for each item.
Cohen’s kappa coefficients were also calculated to
account for chance agreement. Additionally,
misclassifications were analyzed qualitatively to
identify systematic patterns of divergence.

4 Results

Classification Performance

Classification performance across prompting
conditions is summarized in Table 2. Content
domain classification demonstrated consistently
high performance, with all prompting conditions
exceeding 94% accuracy and kappa values above
0.92, indicating substantial agreement beyond
chance. FS-CoT achieved the highest accuracy
(94.9%) and kappa (0.933), reflecting the model’s
strong ability to differentiate TIMSS content
domains. In contrast, classification accuracy for the
cognitive domain showed more variation, ranging
from 60.4% to 64.1% and kappa values between
0.382 and 0.438. The FS-CoT condition yielded the
highest accuracy, followed by ZS baseline and FS.
Kappa values across these conditions suggest fair
to moderate agreement with expert labels,
indicating that while the model captures
meaningful cognitive distinctions, it does so with
less precision than in the content domain.

Difficulty classification, while the most
challenging of the three dimensions, showed
improvement over previous iterations. Accuracy
scores ranged from 44.2% to 49.8%, and all
conditions resulted in positive kappa values,
indicating better-than-chance agreement. ZS-CoT
led in both accuracy and agreement, though overall
performance remained modest, highlighting the
inherent complexity of predicting empirically
derived difficulty levels. Grade level analysis
revealed consistently stronger model performance
for Grade 4 items across all Cclassification
dimensions. For content domain -classification,
Grade 4 items achieved exceptional accuracy
scores ranging from 96.9% to 97.7%. Grade 8
content domain performance, while lower,

remained strong with accuracy scores from 91.0%
to 92.3%. A similar pattern was also observed in
cognitive domain classification. Grade 4 accuracy
ranged from 62.6% to 65.0%, while grade 8
performance varied from 57.4% to 62.8%. Notably,
the FS-CoT condition achieved the smallest grade-
level gap in cognitive domain performance (65.0%
vs. 62.8%). For difficulty classification, Grade 4
items consistently outperformed Grade 8 items
across all conditions. Grade 4 difficulty accuracy
ranged from 50.4% to 57.7%, with ZS-CoT
achieving the highest Grade 4 performance
(57.7%). Grade 8 difficulty classification proved

Prompt Content Cognitive Difficulty
p Domain Domain Level
Acc K Acc  « Acc  «
ZS 94.1 0922 622 0410 442 0.072
zS
942 0923 604 0.382 498 0.134
CoT
FS 94.1 0923 61.3 0.397 447 0.074
FS
944 0930 64.1 0438 484 0.097
CoT

Table 2: Classification Performance

more challenging, with accuracy scores ranging
from 33.0% to 40.4%, with FS-CoT achieving the
best Grade 8 performance (40.4%).

Classification Patterns and Systematic Errors

Given its overall better performance across all
three classification dimensions, the FS-CoT
condition was selected for detailed confusion
matrix  analysis to understand  specific
classification patterns and systematic errors.

For the content domain classification, the model
achieved near perfect classifications, but specific
patterns emerged when analyzed by grade level
(Appendix A Figures A2-A3). For Grade 4
mathematics, the model achieved perfect
classification for Data and Number domains but
showed some boundary confusion with
Measurement and Geometry items. Specifically,
12% of Measurement and Geometry items were
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misclassified as both Data and Number domains,
suggesting overlapping conceptual features in
items involving spatial reasoning and numerical
computation. For Grade 8, content domain
classification revealed different boundary
challenges. While Algebra, Data and Probability,
and Geometry domains were classified perfectly,
Number domain items showed notable confusion
(75%). The primary misclassification pattern
involved 21% of these items being classified as
Algebra, with an additional 4% classified as
Geometry. This pattern suggests that model
struggles with the increasing integration of
algebraic thinking into numerical context in the
higher grades.

As shown in Figure A4, the FS-CoT model
exhibited a strong bias toward predicting the
Applying domain. While Applying items were
accurately classified 84% of the time, it also
attracted most misclassifications receiving 45% of
Knowing and 44% of Reasoning items. Reasoning
accuracy was moderate (53%) but showed
substantial confusion with Applying. Very few
items were confused between Knowing and
Reasoning, indicating the model can generally
distinguish between higher-order and basic
cognitive demands but struggles to differentiate
between applying procedures and engaging in
mathematical reasoning.

Difficulty classification remained the most
challenging task for the model, with a strong
tendency toward underestimation (Figure A5 in
Appendix A). Easy items were correctly classified
64% of the time and no easy items were
misclassified as Hard, indicating a cautious
estimation pattern. Medium items had 71%
accuracy, with 26% underestimated as Easy and
only 3% overestimated as Hard. This suggests the
model treats difficulty as a binary decision Easy
versus Not Easy rather than -effectively
distinguishing all three levels. If we collapse the
difficulty to this more pragmatic Easy vs. not Easy
decision, the accuracy jumped to 0.78. Hard items
were the most frequently misclassified. This
reflects a consistent failure to recognize complex
mathematical or cognitive demands, particularly
when such items are concise or lack surface-level
cues of difficulty.

Linguistic Features of Misclassified Items
To better understand the systematic errors in
difficulty classification, we examined surface

Easy  Medium Hard
Word count  76.8 49.9 66.1
Character 561.4 338.9 404.5
count
Reasoning 0.20 0.09 0.34
Verb count
Number 19.10 12.29 10.74
count
Operations 0.40 1.12 1.31
count

Table 3: Average Surface Features of
Misclassified Items

features of misclassified items as shown in Table 3.
We focused on textual length, numerical content,
and mathematical language.

Misclassified Easy items had the highest
average word count (76.8) and character length
(561.4) substantially longer than misclassified
Medium (50.0 words, 338.9 characters) and Hard
items (66.1 words, 404.5 characters). This suggests
the model tends to get confused by textual
elaboration with cognitive difficulty,
overestimating the challenge of otherwise
straightforward tasks. Conversely, Hard items,
though shorter, were rich in mathematical content.
They contained the highest density of
mathematical operations (1.31 per item) and
reasoning verbs (0.34 per item) yet were
overwhelmingly misclassified as Medium. This
indicates that while GPT-40 detects complexity, it
fails to properly weight them in difficulty
estimation, especially when such cues are
embedded in concise text.

5 Conclusion

This study evaluated the potential of GPT-40 to
perform automated classification of TIMSS
mathematics items. Using a dynamic, framework-
aware prompting strategy, we challenged the model
to assign Grade 4 and Grade 8 mathematics items
to their official content domain, cognitive domain,
and difficulty categories without any fine-tuning or
labeled training data.

Across all prompting conditions, model
consistently provided high agreement with content-
domain classifications with about 95% accuracy (
k > 0.92), and confusion matrices only showed
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minimal boundary issues. These results suggest
that content domain classification is one area where
the model can be deployed with confidence.

Model accuracy for cognitive domain
classifications clustered around 62% (x ~ 0.41).
This level of agreement is consistent with prior
research, including Nasstrom (2009), who reported
moderate inter-rater reliability (x ~ 0.41-0.47)
among experts classifying items according to
Bloom’s taxonomy. Similarly, Karpen and Welch
(2016) found only 46% agreement among faculty
when categorizing exam questions by cognitive
demand. While performance improved modestly
under the FS-CoT prompting condition, error
analysis revealed a systematic tendency to
overclassify items into the Applying category, a
middle category bias. This highlights a clear
opportunity for targeted prompt engineering or
probability calibration strategies.

Model performance was weakest for the three-
level difficulty classification task, with accuracy
around 49%. However, reframing the task as a
binary classification, Easy versus Not Easy, yielded
78% accuracy. This is particularly notable given
that prior research demonstrated limited alignment
between expert predictions of item difficulty and
examinee performance (e.g., Bejar, 1983; Mansoor,
2024; Wonde, 2024) with accuracy rates hovering
around 50-55% even after targeted expert training
(Sayin & Bulut, 2024). Moreover, Clauser et al.
(2009) demonstrated that physicians involved in
Angoff standard setting frequently revised their
difficulty estimates to align with whichever
performance statistics were presented to them,
regardless of their accuracy, highlighting the
inherent instability of human judgements. Taken
together, these findings show that unsupervised
binary screening already matches or in some cases
exceeds typical human baselines.

Given this, the model could serve as a first-pass
filter content tagging and binary difficulty
screening could reduce the number of items
requiring full panel review, freeing experts time to
focus on distractor quality, fairness checks, and
cross-cultural comparability. In addition, because
framework definitions are pulled dynamically the
same pipeline can be applied to other TIMSS
cycles or entirely different frameworks (e.g.,
NAEP, PISA) with minimal revision.

This study has potential limitations. First, the
study focused exclusively on mathematics items
from the 2019 TIMSS cycle; generalizability to

science items, earlier cycles, or Al-generated
content remains to be investigated. Second, all
analyses were conducted using text-only
representations of items thus visual components
such as graphs or diagrams were reduced to
captions, which may have affected the model’s
judgments.  Future  studies  incorporating
multimodal inputs may offer a more accurate
reflection of the item’s full content and complexity.
Third, item difficulty levels were defined based on
fixed percent-correct thresholds. Future research
can consider using IRT-based difficulty estimates
or continuous difficulty prediction using fine-tuned
LLMs.

Overall, this study shows that GPT-40, when
directed with a targeted prompting strategy, can act
as a reliable co-reviewer in the early stages of test
development. While current results are strongest
for content classification, meaningful performance
in cognitive and difficulty domains, with
interpretable error patterns, suggests a promising
role for Al in supporting expert workflows. Rather
than aiming to replace human expertise, these tools
are best positioned to augment it by reducing
workload and improving the speed and consistency
of assessment development.
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A Appendix

Grade Category Category Count
Type
Applying 72
Cognitive .
Domain Knowing 53
Reasoning 39
Data 60
ggiﬁ;ﬁ Measurement 50
4 and Geometry
Number 54
Easy 43
Difficulty Medium 87
Hard 34
Applying 54
Cognitive .
Domain Knowing 41
Reasoning 27
Algebra 35
gonte?t Data and 26
8 omain Probability
Geometry 26
Number 35
Easy 14
Difficulty Medium 56
Hard 52

Table Al: Item Distribution Across Categories
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Act as an expert specializing in the TIMSS
assessment framework. Your task is to simulate how
students interact with a {subject_name} item, diagnose
its cognitive demand, and judge its difficulty level from
both an expert and a student perspective.

Analyze the given TIMSS Grade {grade}
{subject_name} assessment item.

Classify this item according to the TIMSS {year} e
{subject name} Framework. Use these three
categories:

1. **Content Domain**: Select the main content
domain from this list (use the exact name):

{content_domains_text}

2. **Cognitive Domain**: Identify the main

cognitive domain (choose exactly one: Knowing,

Cognitive Domain Classification Accuracy

applying knoving reasaning

Applying, Reasoning): Jasid
{cognitive_domains_text} Figure A4: Cognitive Domain Confusion
3. **Difficulty Level**: Indicate the item's difficulty Matrix

(Easy / Medium / Hard), based not only on typical
student success rates but also on complexity, required
reasoning, potential misconceptions, distractor
strength, and student accessibility: Difficulty Classification Accuracy

{difficulty_text}

Figure Al: Prompt Structure — Zero Shot

Grade 4 - Content Domain Classification Accuracy

Medium Hard
Predicted

sctual
Mmeasurement and geametry

-o4

Figure AS: Difficulty Confusion Matrix

rumber

data measurement ard geametry number
Predicted

Figure A2: Grade 4 Content Domain Confusion
Matrix

Grado B - Content Domain Classification Accuracy

dats wnd probability sigebra

et

e

rumber

agebra data £nd orobability oecmetry namber
Prodicted

Figure A3: Grade 8 Content Domain Confusion
Matrix
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