@inproceedings{morris-etal-2025-using,
title = "Using Whisper Embeddings for Audio-Only Latent Token Classification of Classroom Management Practices",
author = "Morris, Wesley Griffith and
Vitale, Jessica and
Arvelo, Isabel",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.17/",
pages = "154--162",
ISBN = "979-8-218-84228-4",
abstract = "In this study, we developed a textless NLP system using a fine-tuned Whisper encoder to identify classroom management practices from noisy classroom recordings. The model segments teacher speech from non-teacher speech and performs multi-label classification of classroom practices, achieving acceptable accuracy without requiring transcript generation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morris-etal-2025-using">
<titleInfo>
<title>Using Whisper Embeddings for Audio-Only Latent Token Classification of Classroom Management Practices</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wesley</namePart>
<namePart type="given">Griffith</namePart>
<namePart type="family">Morris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="family">Vitale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Arvelo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>In this study, we developed a textless NLP system using a fine-tuned Whisper encoder to identify classroom management practices from noisy classroom recordings. The model segments teacher speech from non-teacher speech and performs multi-label classification of classroom practices, achieving acceptable accuracy without requiring transcript generation.</abstract>
<identifier type="citekey">morris-etal-2025-using</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.17/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>154</start>
<end>162</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Whisper Embeddings for Audio-Only Latent Token Classification of Classroom Management Practices
%A Morris, Wesley Griffith
%A Vitale, Jessica
%A Arvelo, Isabel
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F morris-etal-2025-using
%X In this study, we developed a textless NLP system using a fine-tuned Whisper encoder to identify classroom management practices from noisy classroom recordings. The model segments teacher speech from non-teacher speech and performs multi-label classification of classroom practices, achieving acceptable accuracy without requiring transcript generation.
%U https://aclanthology.org/2025.aimecon-main.17/
%P 154-162
Markdown (Informal)
[Using Whisper Embeddings for Audio-Only Latent Token Classification of Classroom Management Practices](https://aclanthology.org/2025.aimecon-main.17/) (Morris et al., AIME-Con 2025)
ACL