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Abstract

The integration of automated scoring and
addressing whether it might meet the
extensive need for double scoring in
classroom observation systems is the focus
of this study. We outline an accessible
approach for determining the
interchangeability of automated systems
within comparative scoring design studies.

1 Introduction

Classroom observation instruments may be
deployed in different classroom observation
systems, 1.e., the collection of elements that work
together to produce instructional quality ratings
such as the observation instrument, raters, and
scoring design (Hill et al., 2012). Classroom
observation systems operating within education
research or large-scale operational use have
different goals and constraints than those operating
for practical judgements on instructional quality
(Liu et al., 2019). For instance, some classroom
observation systems embedded in educational
research may need calibration and monitor ratings,
double scoring of observations, and complete
multiple observations of teachers whereas
classroom observation systems embedded in a
large school district may not match all of these
elements. Recent research highlights the need for
extensive double scoring to determine whether
raters are scoring accurately and consistently
(White and Ronfeldt, 2024).

One potential approach to address the extensive
need for double scoring is to pair human raters with
an automated scoring system (Rotou and Rupp,
2020; Rupp, 2018). In recent years, a growing
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number of machine learning techniques have been
used to identify features of instructional quality in
classrooms from videos and audio recordings, or
classroom transcripts. In one such study,
researchers explored the zero-shot performance of
ChatGPT (gpt-3.5-turbo) in scoring transcript
segments from 4" and 5™-grade mathematics
instruction by applying the Mathematical Quality
of Instruction (MQI) tool, a classroom observation
instrument (for more information about MQI, see
Hill et al., 2008). Results indicated the Spearman
correlation between human and machine ratings for
dimensions of MQI were low (Wang and Demszky,
2023). In another study, researchers applied a
multimodal model and ChatGPT (gpt-3.5-
turbo-1106 and gpt-4-1106-preview) to
video, audio, and transcripts to score
encouragement and warmth in classrooms, a key
component of the Global Teaching Insights (GTI)
study’s observation protocol (Hou et al., 2024).
They found pairing the multimodal model with
ChatGPT-4 yielded a moderate Pearson correlation
(r =0.513). Studies such as these illustrate the
opportunities for automated scoring systems in
classroom observation.

Current research investigating these automated
scoring systems for classroom observation have
primarily compared the performance of the
automated system to that of human ratings. In
terms of automated scoring systems, this focus is
one of several components in an argument-validity
framework (Rotou and Rupp, 2020; Williamson et
al., 2012). These systems depend on human scoring
for development. Yet, some scholars critique the
lack of theoretical attention to measurement and
reporting of inter-rater reliability for classroom
observations and question whether classroom
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observation systems that rely only on human raters
can even consistently and accurately measure
instructional quality (Liu et al., 2019; White and
Ronfeldt, 2024; Wilhelm et al., 2018). Rather than
shy away from these complexities with classroom
observation systems or call into question the
conclusions of some of the recent research on
automated scoring systems for classroom
observation, we propose an approach to guide
others in this area in reporting their results.

The purpose of this paper is to examine an
approach for illustrating the implications for
double scoring in classroom observation systems
when one of the raters is an automated scoring
system and the other is a human, especially in the
context of smaller datasets for initial system
development. We make use of a dataset from a
longitudinal study investigating the mathematics
instructional quality of early-career elementary
teachers in the United States. The automated
scoring system includes a random forest classifier
using the outputs of a deep neural network capable
of detecting instructional activities in videos to
score the mathematics instructional quality. Within
this context, we present an approach to reporting
the accuracy and consistency of double scoring
within a classroom observation system when one
set of scores was automated and the degree of
degradation observed. This study seeks to answer
the following key research questions:

1. What is the agreement between human
and machine scoring? Is there a
relative bias between the mean
differences of human and machine
scores?

2. How reliable is the machine scoring in
relation to the human scoring?

3. Isthe double scoring method by human
and machine interchangeable to that of
“gold standard” double scoring by
human raters?

2  Background

2.1 Activity Detection with Deep Learning
Neural Networks and Random Forests

Deep learning has become the state-of-the-art
choice for wvarious challenges including
recognizing human activities in video content
(Beddiar et al., 2020). A deep neural network is a
hierarchical learning structure that can learn

complex and abstract features of a given set of data.
It is feasible to train neural networks to classify
activities in videos of instruction such as the
activity structure (i.e., whole group instruction,
small group instruction, individual work, and
transitions; Ahuja et al., 2019; Foster et al., 2024a),
student and teacher behaviors (Foster et al., 2024a;
Patidar et al., 2024; Sharma et al., 2021; Sun et al.,
2021), and their location (Foster et al., 2024a;
Patidar et al., 2024).

In this study, a deep neural network was used
to detect instructional activities within video
content of elementary mathematics instruction.
From the output of the neural network, a random
forest classifier was then used to predict the
mathematics instructional quality. Random forests
are a supervised machine learning algorithm that
use many tree-like structures (i.e., decision trees) to
make predictions or classifications (James et al.,
2021). In the case of classification, a random forest
selects the majority vote from decision trees.

2.2 Classroom Observation Measures for
Ambitious Mathematics Instruction

There is no single conceptualization of quality
mathematics instructional, although there is a fair
amount of overlap in what should be regarded as
high-quality instruction in mathematics (Praetorius
and Charalambous, 2018; Schlesinger and Jentsch,
2016). We conceptualize high-quality mathematics
instruction as teaching practices aligned with
ambitious mathematics teaching (Franke et al.,
2007; Lampert et al., 2013; Newmann and
Associates, 1996; Thompson et al., 2013). The
Mathematics Scan (M-Scan) is a classroom
observation protocol for mathematics teaching
aligned with ambitious mathematics instruction
(Berry et al., 2013; Walkowiak et al., 2018). It is
operationalized at the lesson level and has been
empirically validated (Walkowiak et al., 2014). M-
Scan has nine dimensions organized under four
domains. For each dimension, there are indicators
with descriptions for low (1-2), medium (3-5), and
high (6-7) ratings.

2.3 Interrater Agreement and Reliability in
Classroom Observations

A concern within classroom observation systems is
whether raters can accurately and consistently
apply an observational instrument. There are
several approaches to reporting interrater
agreement and reliability and some literature lists
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these terms interchangeably (Tinsley and Weiss,
2000; White, 2018; White and Ronfeldt, 2024;
Wilhelm et al., 2018). However, interrater
agreement and interrater reliability are different
measures. Interrater agreement indicates the extent
to which different raters assign the exact same
rating to each observation. Interrater reliability
indicates the consistency of raters when scoring a
collection. It is possible to have high interrater
agreement and low interrater reliability and vice
versa (Cicchetti and Feinstein, 1990). Therefore, it
is important to consider the implications of both
measures and their magnitude (White, 2018;
Wilhelm et al., 2018).

Recent research has also brought attention to
monitoring rater quality in classroom observation
research (White and Ronfeldt, 2024). Typically,
only a small subset of videos (i.e., reliability set) is
ever double scored to monitor rater quality.
However, current recommendations advise more
than 20 observations to estimate rater error with
95% confidence (White and Ronfeldt, 2024). One
suggestion to help guide researchers’ decision
making about rater errors is to use simulations.
These simulations assume a level of rater error
(e.g., £1 or 2 points) and hypothesized distribution
of “true” or master scores and then examine the
implications of the number of observations needed
for suitable rater error rates.

2.4 Methods Comparison

This paper makes use of a technique for comparing
two methods for measurement that arose out of
clinical medical research (Altman and Bland, 1983,
Bland and Altman, 1999, 2003, 2010). The
technique is not widely used in education research,
but there have been recent calls for its use (Wilhelm
et al., 2018). The technique can compare one
established method to another indirect or less
costly alternative method. It assumes that neither
method can provide a true measure and so seeks to
determine how much the two methods agree and
whether they are interchangeable in practice. Both
methods are applied to the same observations.
Then, the difference between the measures for each
observation is calculated to compute the mean
difference (d). If the mean difference is non-zero,
then this indicates there is a relative bias.

A range, in which most differences between
measurements by the two methods will lie, is called
the limit of agreement (LOA). This LOA can be
determined using parametric and non-parametric

approaches (Bland and Altman, 1999). In this
study, we take a non-parametric approach as the
distribution of between-method differences (i.e.,
difference in human ratings) is not well-known.
First, we order the differences observed from least
to greatest. Then, we remove 5% of the observed
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Figure 1: A Bland-Altman plot of two simulated
measurements.

differences beginning with the most extreme from
either end of the distribution. After removing those
extreme differences, we report the LOA by finding
the difference of the remaining two endpoints of
the observed differences.

There is a related graphical representation,
referred to as a Bland-Altman plot. It plots the
average of the two methods against the difference
of the two methods for each observation. Figure 1
shows a Bland-Altman plot of two simulated
measurements of 100 lesson observations. The first
and second measure observations range between 1
and 7. In Figure 1, we see that d = 0.08 and
LOA =10 . From this Bland-Altman plot, we
interpret there is little to no relative bias when d is
close to 0 and we could say that for 95% of
observations, a measurement by the first approach
would differ no more than +5 units from the
second approach. If LOA < 10 is negligible in
practice, then we may conclude the two methods
for measuring are interchangeable.

3 Current Study
3.1 Video Data

Videos of elementary instruction used in this study
were collected as part of a previous research study
known as the Developing Ambitious Instruction
(DAL Youngs et al., 2022). The DAI focused on 83
beginning elementary teachers who graduated
from teacher preparation programs at five
universities in the United States either in 2015-16
or 2016-17. After graduation, these individuals
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started teaching young children (ages 5 to 11) full-
time in grades K-5 in general education settings.
The DAI team observed each teacher as they taught
mathematics and English language arts (ELA) at
least six times each during their first two years of
full-time teaching (i.e., three times each for
mathematics and ELA per school year). Each
video-recorded lesson was about 45 minutes in
length and the current study used a total of 360
hours of video from over 400 lessons.

3.2 Scoring of Lesson Videos with M-Scan

As part of the DAI study, videos of mathematics
lessons were assigned scores with M-Scan by at
least one human rater. The following steps were
taken to train M-Scan raters and ensure high levels
of reliability. First, each rater watched three videos
of elementary mathematics lessons, assigned
scores for each M-Scan domain, and reviewed the
master ratings and justifications. Raters then met
with the master rater and watched video clips that
exemplified different scores on each of the M-Scan
dimensions and practiced rating two additional
lessons. To determine if raters met certification
requirements, raters independently coded a series
of lessons without conferring with the master rater;
then they met with the master rater to confer on
scores. The master rater computed agreement
scores (at least 80% exact or adjacent matches were
required), identified items that were sources of
systematic error, and looked at convergence of
ratings. If a rater did not meet the 80% threshold,
they were required to rate an additional two
lessons. On a regular basis, the master rater
conducted a meeting in which raters viewed,
coded, and discussed one or two lessons from the
reliability set. These meetings were used to monitor
raters’ ongoing performance.

3.3 Annotations of Videos

For the purpose of training a neural network, the
team developed a list of 24 instructional activities
for annotating the video dataset. For example, the
annotation label of Using or holding an
instructional tool was developed in reference to the
M-Scan dimension Students’ Use of Math Tools.
Prior to annotating the video dataset, annotators
went through training on how to apply the
classroom-based activity labels. At the end of the
training, annotators’ performance was periodically
monitored (Foster et al., 2024c¢).

3.4 Neural Network Model for Instructional
Activity Detection

From our prior investigation, we found The
Background Suppression network (BaS-Net, Lee et
al., 2020) was advantageous for detecting activities
in classroom videos (Foster et al., 2024b). The 268
hours of video recordings were used to train and
test a modified BaS-Net to detect the 24
instructional activity labels, which we call BaS-
Net+. In our experimental setup, training and
testing sets were split 80 and 20 percent
respectively. In comparison to previous reported
results (Foster et al., 2024a), we restructured the
testing set so that it did not feature any of the
teachers from the training set. Once the neural
network was trained and tested on 268 hours from
DAI dataset, we then used it to detect the 24
instructional activities in an evaluation set
featuring 92 additional math lessons.

3.5 Random Forest Classifiers for M-Scan
Scoring

Random forest classifiers were used to predict
scores for each M-Scan dimension. We developed
the random forest classifiers with the package
randomForest in R (Breiman, 2001). All 24
instructional activity labels generated by human
annotations were used as initial predictors for each
of the nine M-Scan dimensions scores. Each
random forest included 41 decision trees with the
mtry hyper-parameter set between 3 and 5 features
at each step of branching.

After building the random forest classifiers, we
applied them to the aggregated data in the
evaluation set that was generated by BaS-Net+. We
then compared the predicted score by the random
forest classifiers to human scores.

3.6 Measuring Interrater Agreement and
Reliability

We report agreements as ratings that agree exactly
or differ by no more than 1 point (Lawlis and Lu,
1972), which we denote as p, and p;. These levels
of agreement are often used in practice with human
raters for M-Scan (Walkowiak et al., 2018). For
interrater agreement, we also report a descriptive
index of agreement, developed by Tinsley and
Weiss (1975), called the T-index:

_ Ng—Npc
~ N-Np M
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where N, is the number of agreements, N is the
number of ratings, and p, is the probability of
chance agreement of an individual. If T is positive,
then the observed agreement is greater than
agreement that would occur by chance. If T is
negative, then the observed agreement is less than
chance agreement. When T is zero, then the
observed agreement is equal to the expected chance
agreement. There is also a nonparametric chi-
square test of significance for the T-index (Lawlis
and Lu, 1972; Tinsley and Weiss, 2000). We use T,
and T; to indicate the index that corresponds to
exact agreement and within one point agreement,
respectively.

To report any relative bias between machine and
human ratings, we report the mean difference (cf)
A positive mean difference indicates on average the
machine scored higher than the human raters while
a negative value indicates on average the human
scored relatively higher for a given dimension of
M-Scan. We use a threshold of d > 0.20 to
conclude a possible relative bias between machine
and human ratings.

When reporting interrater reliability for ordinal-
scaled ratings, we use Finn’s coefficient (7y) and
Gwet’s AC, for their respective advantages. Both
indices range between 0 and 1 with higher values
indicating higher levels of consistency between
raters. A nonparametric chi-square test for
significance is available for 1y and AC,. Finn’s
coefficient is recommended for use when the
within-raters variance is highly constrained and to
use ap < 0.01 for applied research (Tinsley and
Weiss, 2000). It does not require independent
subjects, which in our use case is important as some
of the lessons were taught by the same teacher.
Gwet’s AC, is a generalization of Gwet’s AC;
(Gwet, 2008) and it does not assume all raters will
be paired randomly for each observation.

3.7 Comparing Methods of Double Scoring

To determine two methods are interchangeable,
the Bland-Altman method requires specificity
beforehand as to how small the LOA should be to
conclude that either method is sufficient in
practice. This decision is a practical one, not a
statistical decision (Bland and Altman, 1999).
Practitioners should provide a strong rationale for
this decision. We decided to use what has been
observed in prior research with human raters as the
“gold standard,” although some could argue this

may not be sufficient evidence (White and
Ronfeldt, 2024). With expert human raters scoring
with M-Scan, it was found that they agreed exactly
66.7% and within one point 97.6% of the time
(Walkowiak et al., 2018). Thus, we decided to use
65% exact agreement and 95% agreement within
one point. We may conclude the two methods are
interchangeable if they met or exceeded each of
these levels of agreement if the LOA < 1.
However, before we may make such a conclusion,
we must check the assumption that there is no
relation between the difference between the ratings
and average ratings. We use Spearman’s rank
correlation coefficient (p) to examine for any
monotonic relations. We use the criteria |p| >
0.30 to conclude the possibility of any monotonic
relationship.

4 Results

4.1 Research Question 1: Agreement

The exact agreement between human and machine
scoring ranged between 10.9% to 58.7%. The
corresponding Ty-index values are listed in Table 2.
Most T, -index values indicated little to no
agreement between the scoring except for
Mathematical Accuracy, which indicated moderate
agreement (0.41 < T, < 0.60). Allowing for one
point difference, we found the extended percent
agreements of human and machine ratings between
57.6% and 89.1% agreement. The corresponding
T; -index values range between 0.31 and 0.82.
These are moderate to substantial (T; = 0.61)
levels of agreement between human and machine
ratings. Almost all agreements between human and
machine ratings for each dimension of M-Scan
were found to be statistically significant; thus, it is
highly unlikely these levels of agreement were the
result of chance.
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M-Scan Interrater Agreement

Dimension T, Do T, 121

Structure of the  0.18%** 29.3% 0.70*** 81.5%
Lesson

Use of 0.09 21.7% 0.50*%** 69.6%
Representations

Students’ Use of -0.04  10.9% 0.49%** 68.5%
Math Tools

Cognitive 0.11*  23.9% 0.40*** 63.0%
Demand

Math Discourse ~ 0.22*** 33.7% 0.50%** 69.6%
Community

Explanation and  0.14** 26.1% 0.52*** 70.7%
Justification

Problem Solving 0.11*  23.9% 0.31*** 57.6%

Connections and  0.18%** 29.3% 0.57*** 73.9%
Applications

Mathematical 0.52*** 58.7% 0.82*** 89.1%
Accuracy

*p < 0.05, **p < 0.01, ***p < 0.001

Table 2: Interrater agreements.

Next, we report if there were any relative bias
between the human and machine ratings.
Examining the mean differences between the
paired human and machine scores (see Table 3), we
found a relative bias for nearly all the M-Scan
dimensions. The human raters were, on average,
rating higher scores in comparison to the random
forest classifiers for some of the M-Scan
dimensions (e.g., Problem Solving). On other
dimensions, the random forest classifiers were, on
average, scoring higher than the human raters (e.g.,
Explanation and Justification). No systematic bias
was found for the dimensions of Use of
Representation when observing the mean
differences between the human and machine
ratings.

M-Scan Dimension Mean Differences
d
Structure of the Lesson 0.48
Use of Representations -0.03
Students’ Use of Math Tools -0.23
Cognitive Demand -0.82
Math Discourse Community -0.64
Explanation and Justification 0.73
Problem Solving -0.99
Connections and Applications -0.33
Mathematical Accuracy 0.30

Table 3: Mean differences between machine and
human ratings.
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4.2 Research Question 2: Reliability

For all dimensions of M-Scan, we found the
interrater reliability between human and machine
ratings to be more than substantial (> 0.600) and
statistically significant (p < 0.001) according to
Finn’s reliability coefficient (1) and Gwet’s AC,.
These interrater reliability statistics for each
dimension of M-Scan are listed in Table 4.

M-Scan Dimension Interrater Reliability
Tz AC,
Structure of the Lesson 0.812%** (). 855%**
Use of Representations 0.765%** (.851***
Students’ Use of Math Tools 0.621%*** (. 757***
Cognitive Demand 0.800%** (.814***
Math Discourse Community 0.812%** (.860***
Explanation and Justification =~ 0.722%** (.838***
Problem Solving 0.702%** (. 706%**
Connections and Applications ~ 0.802*** (.877***
Mathematical Accuracy 0.891*** (.946%**

*p < 0.05, ** p < 0.01, *** p < 0.001

Table 4: Interrater reliability

4.3 Research Question 3: Interchangeability

In this section, we report whether the double
scoring done by human and machine is
interchangeable to the “gold standard” between
human raters. For our purpose, we decided if we
observed at least 95% agreement within the LOA <
1 and at least 65% exact agreement between
human and machine ratings, then the double
scoring done by human and machine would be
interchangeable with the method of two human
raters. Meeting this condition would indicate that
the method of rating a lesson by a human rater and
machine rater agrees sufficiently in practice. Table
5 lists all the LOA for each dimension of M-Scan.
Before finding the LOAs using the Bland-Altman
method, we checked the assumption needed that
there is no relation between the difference between
the ratings and average ratings using Spearman’s
p-statistic. As shown in Table 5, all dimensions
except Problem Solving did not satisfy the needed
assumption; thus, these LOA should be interpreted
with caution. Nevertheless, we found no evidence
to suggest the method of pairing human raters with
any of the random forest classifiers is
interchangeable with the double scoring with two
human raters. This conclusion came from the two



necessary criteria: the exact agreement was >65%
and at least 95% agreement for a LOA < 2.

M-Scan Dimension Limitof = Spearman’s
Agreement Coefficient
LOA p

Structure of the 5% -0.37
Lesson

Use of 4* -0.99
Representations

Students’ Use of 6%* -0.80
Math Tools

Cognitive Demand 5% -0.81

Math Discourse 4% -0.77
Community

Explanation and 5% -0.82
Justification

Problem Solving 6 -0.24

Connections and 4* -1.0
Applications

Mathematical 3% -0.88
Accuracy

Note: (*) indicates these LOA interpretations should be
interpreted with caution as there is an association between
the mean score and scoring difference, as evidenced by
corresponding value of p, which does not satisfy one of the
criteria for use of the Bland-Altman method.

5 Discussion

Rater error is highly complex and so it is difficult
to claim that raters are not significantly altering a
measure such as instructional quality. Although
interrater agreement and reliability provide some
estimates of rater error, recent research suggests a
precise measure of rater error requires more
scoring occasions than what is typical (White and
Ronfeldt, 2024). As a result, this means there is a
significant need to double score a sizeable
collection to capture a robust measure of rater error.

One potential solution to meeting this size of
double scoring is to develop an automated rater. We
used our study as a context to illustrate an approach
for determining whether double scoring when one
of the raters is an automated scoring system is
interchangeable with the “gold-standard” of two
human raters. We drew on classroom observation
systems research and methods comparison studies.

In the context of this study, we found insufficient
evidence that the method of double scoring the
video by a human and machine was
interchangeable with the “gold-standard” method
of double scoring by two human raters. Although
we found some agreement and reliability between

the human and machine ratings, the current level of
performance did not provide evidence for the
ability to interchange the two methods as set by our
outset criteria from what had previously been
observed. We acknowledge decisions that we made
may not be appropriate for every scoring design.

However, this study goes beyond what is
typically reported in findings about the
performance of automated classroom observation
systems, which typically detail the association
between human and machine scores. This study
also examined potential impacts on scoring design
decisions as they relate to automated scoring such
as double scoring when one rater is an automated
system. This decision could have several
consequences for rater monitoring and associated
time and financial costs. There is a need for
evaluators of these automated systems to consider
methods and frameworks for addressing this issue
and others that are beyond calibration between
human and machine raters (c.f., Doewes et al.,
2023; Johnson et al., 2022; Rotou and Rupp, 2020;
Williamson et al., 2012).

Acknowledgments

We would like to thank the members of the
Artificial Intelligence for Advancing Instruction
team and the Development of Ambitious
Instruction team at the University of Virginia for
their contributions. This work was supported by the
National Science Foundation under Grant No.
2000487 and The Robertson Foundation.
Opinions, findings, and conclusions in this
presentation are those of the authors and do not
necessarily reflect the views of the funding
agencies.

References

Karan Ahuja, Dohyun Kim, Franceska Xhakaj, Virag
Varga, Anne Xie, Stanley Zhang, Jay Eric
Townsend, Chris Harrison, Amy Ogan, and Yuvraj
Agarwal. 2019. Edusense: Practical classroom
sensing at scale. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(3):1-26.

D. G. Altman and J. M. Bland. 1983. Measurement in
medicine: The analysis of method comparison
studies. Journal of the Royal Statistical Society.
Series D (The Statistician), 32(3):307-317.

Djamila Romaissa Beddiar, Brahim Nini, Mohammad
Sabokrou, and Abdenour Hadid. 2020. Vision-based
human activity recognition: A survey. Multimedia
Tools and Applications, 79(41):30509-30555.

169



Robert Q Berry, Sara E Rimm-Kaufman, Erin M
Ottmar, Temple A Walkowiak, Eileen G Merritt, and
Holly H Pinter. 2013. The Mathematics Scan (M-
Scan): A measure of standards-based mathematics
teaching practices.

J. M. Bland and D. G. Altman. 2003. Applying the right
statistics: Analyses of measurement studies.
Ultrasound in Obstetrics & Gynecology, 22(1):85—
93.

J Martin Bland and Douglas G Altman. 1999.
Measuring agreement in method comparison
studies. Statistical Methods in Medical Research,
8(2):135-160.

J. Martin Bland and Douglas G. Altman. 2010.
Statistical methods for assessing agreement between
two methods of clinical measurement. /nternational
Journal of Nursing Studies, 47(8):931-936.

Jonathan Bostic, Kristin Lesseig, Milan Sherman, and
Melissa Boston. 2021. Classroom observation and
mathematics education research. Journal of
Mathematics Teacher Education, 24(1):5-31.

Leo Breiman. 2001. Machine
Learning, 45(1):5-32.

D. V. Cicchetti and A. R. Feinstein. 1990. High
agreement but low kappa: II. Resolving the
paradoxes. Journal of Clinical Epidemiology,
43(6):551-558.

Afrizal Doewes, Nughthoh Arfawi Kurdhi, and Akrati
Saxena. 2023. Evaluating quadratic weighted kappa
as the standard performance metric for automated
essay scoring. In pages 103—113.

Random Forests.

Jonathan K. Foster, Matthew Korban, Peter Youngs,
Ginger S. Watson, and Scott T. Acton. 2024a.
Automatic classification of activities in classroom
videos. Computers and Education: Artificial
Intelligence, 6:100207.

Jonathan K. Foster, Matthew Korban, Peter Youngs,
Ginger S. Watson, and Scott T. Acton. 2024b.
Classification of instructional activities in
classroom videos wusing neural networks. In
Xiaoming Zhai and Joseph Krajcik, editors, Uses of
Artificial Intelligence in STEM Education, pages
439-464. Oxford University Press.

Jonathan K. Foster, Peter Youngs, Rachel van
Aswegen, Samarth Singh, Ginger S. Watson, and
Scott T. Acton. 2024c. Automated classification of
elementary instructional activities: Analyzing the
consistency of human annotations. Journal of
Learning Analytics:1-18.

Megan L. Franke, Elham Kazemi, and Dan Battey.
2007. Mathematics teaching and classroom practice.
In Frank K. Lester and National Council of Teachers
of Mathematics, editors, Second handbook of
research on mathematics teaching and learning: a

project of the National Council of Teachers of
Mathematics, pages 225-256. Information Age
Publishing, Charlotte, NC.

Kilem Li Gwet. 2008. Computing inter-rater reliability
and its variance in the presence of high agreement.
British Journal of Mathematical and Statistical
Psychology, 61(1):29-48.

Heather C. Hill, Merrie L. Blunk, Charalambos Y.
Charalambous, Jennifer M. Lewis, Geoffrey C.
Phelps, Laurie Sleep, and Deborah Loewenberg
Ball. 2008. Mathematical knowledge for teaching
and the mathematical quality of instruction: An

exploratory study. Cognition and Instruction,
26(4):430-511.

Heather C. Hill, Charalambos Y. Charalambous, and
Matthew A. Kraft. 2012. When rater reliability is not
enough: Teacher observation systems and a case for

the generalizability study. Educational Researcher,
41(2):56-64.

Ruikun Hou, Tim Fiitterer, Babette Biihler, Efe Bozkir,
Peter Gerjets, Ulrich Trautwein, and Enkelejda

Kasneci. 2024. Automated assessment
of encouragement  and warmth  in classrooms
leveraging  multimodal  emotional  features

and chatgpt. In Andrew M. Olney, Irene-Angelica
Chounta, Zitao Liu, Olga C. Santos, and Ig Ibert
Bittencourt, editors, Artificial Intelligence in
Education, pages 60-74, Cham. Springer Nature
Switzerland.

Gareth James, Danicla Witten, Trevor Hastie, and
Robert Tibshirani. 2021. An introduction to
statistical learning: With applications in R.Springer
texts in statistics. Springer, New York, NY, Second
edition.

Matthew S. Johnson, Xiang Liu, and Daniel F.
McCaffrey. 2022. Psychometric Methods to
Evaluate Measurement and Algorithmic Bias in
Automated Scoring. Journal of FEducational
Measurement, 59(3):338-361.

Magdalene Lampert, Megan Loef Franke, Elham
Kazemi, Hala Ghousseini, Angela Chan Turrou,
Heather Beasley, Adrian Cunard, and Kathleen
Crowe. 2013. Keeping it complex: Using rehearsals
to support novice teacher learning of ambitious
teaching. Journal of Teacher Education, 64(3):226—
243.

G. Frank Lawlis and Elba Lu. 1972. Judgment of
counseling process: Reliability, agreement, and
error. Psychological Bulletin, 78(1):17-20.

Pilhyeon Lee, Youngjung Uh, and Hyeran Byun. 2020.
Background Suppression Network for weakly-
supervised  temporal action  localization.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34(07):11320-11327.

170



Shuangshuang Liu, Courtney A. Bell, Nathan D. Jones,
and Daniel F. McCaffrey. 2019. Classroom
observation systems in context: A case for the
validation of observation systems. Educational
Assessment,  Evaluation and  Accountability,
31(1):61-95.

Fred M. Newmann and Associates. 1996. Authentic
achievement: Restructuring schools for intellectual
quality.The Jossey-Bass education series. Jossey-
Bass, San Francisco.

Prasoon Patidar, Tricia Ngoon, Neeharika Vogety,
Nikhil Behari, Chris Harrison, John Zimmerman,
Amy Ogan, and Yuvraj Agarwal. 2024. Edulyze:
Learning analytics for real-world classrooms at
scale. Journal of Learning Analytics, 11(2):297—
313.

Anna-Katharina Praetorius and Charalambos Y.
Charalambous. 2018. Classroom observation
frameworks for studying instructional quality:
Looking back and looking forward. ZDM,
50(3):535-553.

Ourania Rotou and André A. Rupp. 2020. Evaluations
of automated scoring systems in practice. ETS
Research Report Series, 2020(1):1-18.

André A. Rupp. 2018. Designing, evaluating, and
deploying automated scoring systems with validity
in mind: Methodological design decisions. Applied
Measurement in Education, 31(3):191-214.

Lena Schlesinger and Armin Jentsch. 2016. Theoretical
and methodological challenges in measuring
instructional quality in mathematics education using
classroom observations. ZDM, 48(1):29-40.

Vijeta Sharma, Manjari Gupta, Ajai Kumar, and Deepti
Mishra. 2021. EduNet: A new video dataset for
understanding human activity in the classroom
environment.  Sensors  (Basel,  Switzerland),
21(17):5699.

Bo Sun, Yong Wu, Kaijie Zhao, Jun He, Lejun Yu,
Huanging Yan, and Ao Luo. 2021. Student Class
Behavior Dataset: A video dataset for recognizing,
detecting, and captioning students’ behaviors in
classroom scenes. Neural Computing and
Applications, 33(14):8335-8354.

Jessica Thompson, Mark Windschitl, and Melissa
Braaten. 2013. Developing a theory of ambitious
early-career teacher practice. American Educational
Research Journal, 50(3):574-615.

Howard E. Tinsley and David J. Weiss. 1975. Interrater
reliability and agreement of subjective judgments.
Journal of Counseling Psychology, 22(4):358-376.

Howard E. Tinsley and David J. Weiss. 2000. Interrater
reliability and agreement. In Handbook of Applied
Multivariate Statistics and Mathematical Modeling,
pages 95—124. Elsevier.

171

Temple A. Walkowiak, Robert Q. Berry, J. Patrick
Meyer, Sara E. Rimm-Kaufman, and Erin R.
Ottmar. 2014. Introducing an observational measure
of standards-based mathematics teaching practices:
Evidence of validity and score reliability.
Educational Studies in Mathematics, 85(1):109—
128.

Temple A. Walkowiak, Robert Q. Berry, Holly H.
Pinter, and Erik D. Jacobson. 2018. Utilizing the M-
Scan to measure standards-based mathematics

teaching practices: affordances and limitations.
ZDM, 50(3):461-474.

Rose E. Wang and Dorottya Demszky. 2023. Is
ChatGPT a good teacher coach? Measuring zero-
shot performance for scoring and providing
actionable insights on classroom instruction.
arXiv:2306.03090 [cs].

Mark C. White. 2018. Rater performance standards for
classroom observation instruments. Educational
Researcher, 47(8):492-501.

Mark White and Matt Ronfeldt. 2024. Monitoring rater
quality in observational systems: Issues due to
unreliable estimates of rater quality. Educational
Assessment, 29(2):124—146.

Anne Garrison Wilhelm, Amy Gillespie Rouse, and
Francesca Jones. 2018. Exploring Differences in
Measurement and Reporting of Classroom
Observation Inter-Rater Reliability. Practical
Assessment, Research, and Evaluation, 23(4):1-16.

David M. Williamson, Xiaoming Xi, and F. Jay Breyer.
2012. A framework for evaluation and use of
automated scoring. Educational Measurement:
Issues and Practice, 31(1):2—13.

Peter Youngs, Lauren Molloy Elreda, Dorothea
Anagnostopoulos, Julie Cohen, Corey Drake, and
Spyros Konstantopoulos. 2022. The development of
ambitious instruction: How beginning elementary
teachers’ preparation experiences are associated
with their mathematics and English language arts
instructional practices. Teaching and Teacher
FEducation, 110:103576.



