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Abstract 

The integration of automated scoring and 
addressing whether it might meet the 
extensive need for double scoring in 
classroom observation systems is the focus 
of this study. We outline an accessible 
approach for determining the 
interchangeability of automated systems 
within comparative scoring design studies. 

1 Introduction 

Classroom observation instruments may be 
deployed in different classroom observation 
systems, i.e., the collection of elements that work 
together to produce instructional quality ratings 
such as the observation instrument, raters, and 
scoring design (Hill et al., 2012). Classroom 
observation systems operating within education 
research or large-scale operational use have 
different goals and constraints than those operating 
for practical judgements on instructional quality 
(Liu et al., 2019). For instance, some classroom 
observation systems embedded in educational 
research may need calibration and monitor ratings, 
double scoring of observations, and complete 
multiple observations of teachers whereas 
classroom observation systems embedded in a 
large school district may not match all of these 
elements. Recent research highlights the need for 
extensive double scoring to determine whether 
raters are scoring accurately and consistently 
(White and Ronfeldt, 2024). 

One potential approach to address the extensive 
need for double scoring is to pair human raters with 
an automated scoring system (Rotou and Rupp, 
2020; Rupp, 2018). In recent years, a growing 

number of machine learning techniques have been 
used to identify features of instructional quality in 
classrooms from videos and audio recordings, or 
classroom transcripts. In one such study, 
researchers explored the zero-shot performance of 
ChatGPT (gpt-3.5-turbo) in scoring transcript 
segments from 4th- and 5th-grade mathematics 
instruction by applying the Mathematical Quality 
of Instruction (MQI) tool, a classroom observation 
instrument (for more information about MQI, see 
Hill et al., 2008). Results indicated the Spearman 
correlation between human and machine ratings for 
dimensions of MQI were low (Wang and Demszky, 
2023). In another study, researchers applied a 
multimodal model and ChatGPT (gpt-3.5-
turbo-1106 and gpt-4-1106-preview) to 
video, audio, and transcripts to score 
encouragement and warmth in classrooms, a key 
component of the Global Teaching Insights (GTI) 
study’s observation protocol (Hou et al., 2024). 
They found pairing the multimodal model with 
ChatGPT-4 yielded a moderate Pearson correlation 
(𝑟 = 0.513). Studies such as these illustrate the 
opportunities for automated scoring systems in 
classroom observation.  

Current research investigating these automated 
scoring systems for classroom observation have 
primarily compared the performance of the 
automated system to that of human ratings. In 
terms of automated scoring systems, this focus is 
one of several components in an argument-validity 
framework (Rotou and Rupp, 2020; Williamson et 
al., 2012). These systems depend on human scoring 
for development. Yet, some scholars critique the 
lack of theoretical attention to measurement and 
reporting of inter-rater reliability for classroom 
observations and question whether classroom 
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observation systems that rely only on human raters 
can even consistently and accurately measure 
instructional quality (Liu et al., 2019; White and 
Ronfeldt, 2024; Wilhelm et al., 2018). Rather than 
shy away from these complexities with classroom 
observation systems or call into question the 
conclusions of some of the recent research on 
automated scoring systems for classroom 
observation, we propose an approach to guide 
others in this area in reporting their results. 

The purpose of this paper is to examine an 
approach for illustrating the implications for 
double scoring in classroom observation systems 
when one of the raters is an automated scoring 
system and the other is a human, especially in the 
context of smaller datasets for initial system 
development. We make use of a dataset from a 
longitudinal study investigating the mathematics 
instructional quality of early-career elementary 
teachers in the United States. The automated 
scoring system includes a random forest classifier 
using the outputs of a deep neural network capable 
of detecting instructional activities in videos to 
score the mathematics instructional quality. Within 
this context, we present an approach to reporting 
the accuracy and consistency of double scoring 
within a classroom observation system when one 
set of scores was automated and the degree of 
degradation observed. This study seeks to answer 
the following key research questions: 

1. What is the agreement between human 
and machine scoring?  Is there a 
relative bias between the mean 
differences of human and machine 
scores? 

2. How reliable is the machine scoring in 
relation to the human scoring?  

3. Is the double scoring method by human 
and machine interchangeable to that of 
“gold standard” double scoring by 
human raters?  

2 Background 

2.1 Activity Detection with Deep Learning 
Neural Networks and Random Forests 

Deep learning has become the state-of-the-art 
choice for various challenges including 
recognizing human activities in video content 
(Beddiar et al., 2020). A deep neural network is a 
hierarchical learning structure that can learn 

complex and abstract features of a given set of data. 
It is feasible to train neural networks to classify 
activities in videos of instruction such as the 
activity structure (i.e., whole group instruction, 
small group instruction, individual work, and 
transitions; Ahuja et al., 2019; Foster et al., 2024a), 
student and teacher behaviors (Foster et al., 2024a; 
Patidar et al., 2024; Sharma et al., 2021; Sun et al., 
2021), and their location (Foster et al., 2024a; 
Patidar et al., 2024). 

In this study, a deep neural network was used 
to detect instructional activities within video 
content of elementary mathematics instruction. 
From the output of the neural network, a random 
forest classifier was then used to predict the 
mathematics instructional quality. Random forests 
are a supervised machine learning algorithm that 
use many tree-like structures (i.e., decision trees) to 
make predictions or classifications (James et al., 
2021). In the case of classification, a random forest 
selects the majority vote from decision trees.  

2.2 Classroom Observation Measures for 
Ambitious Mathematics Instruction 

There is no single conceptualization of quality 
mathematics instructional, although there is a fair 
amount of overlap in what should be regarded as 
high-quality instruction in mathematics (Praetorius 
and Charalambous, 2018; Schlesinger and Jentsch, 
2016). We conceptualize high-quality mathematics 
instruction as teaching practices aligned with 
ambitious mathematics teaching (Franke et al., 
2007; Lampert et al., 2013; Newmann and 
Associates, 1996; Thompson et al., 2013). The 
Mathematics Scan (M-Scan) is a classroom 
observation protocol for mathematics teaching 
aligned with ambitious mathematics instruction 
(Berry et al., 2013; Walkowiak et al., 2018). It is 
operationalized at the lesson level and has been 
empirically validated (Walkowiak et al., 2014). M-
Scan has nine dimensions organized under four 
domains. For each dimension, there are indicators 
with descriptions for low (1-2), medium (3-5), and 
high (6-7) ratings. 

2.3 Interrater Agreement and Reliability in 
Classroom Observations 

A concern within classroom observation systems is 
whether raters can accurately and consistently 
apply an observational instrument. There are 
several approaches to reporting interrater 
agreement and reliability and some literature lists 
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these terms interchangeably (Tinsley and Weiss, 
2000; White, 2018; White and Ronfeldt, 2024; 
Wilhelm et al., 2018). However, interrater 
agreement and interrater reliability are different 
measures. Interrater agreement indicates the extent 
to which different raters assign the exact same 
rating to each observation. Interrater reliability 
indicates the consistency of raters when scoring a 
collection. It is possible to have high interrater 
agreement and low interrater reliability and vice 
versa (Cicchetti and Feinstein, 1990). Therefore, it 
is important to consider the implications of both 
measures and their magnitude (White, 2018; 
Wilhelm et al., 2018). 

Recent research has also brought attention to 
monitoring rater quality in classroom observation 
research (White and Ronfeldt, 2024). Typically, 
only a small subset of videos (i.e., reliability set) is 
ever double scored to monitor rater quality. 
However, current recommendations advise more 
than 20 observations to estimate rater error with 
95% confidence (White and Ronfeldt, 2024). One 
suggestion to help guide researchers’ decision 
making about rater errors is to use simulations. 
These simulations assume a level of rater error 
(e.g., ±1 or 2 points) and hypothesized distribution 
of “true” or master scores and then examine the 
implications of the number of observations needed 
for suitable rater error rates. 

2.4 Methods Comparison 

This paper makes use of a technique for comparing 
two methods for measurement that arose out of 
clinical medical research (Altman and Bland, 1983, 
Bland and Altman, 1999, 2003, 2010).  The 
technique is not widely used in education research, 
but there have been recent calls for its use (Wilhelm 
et al., 2018). The technique can compare one 
established method to another indirect or less 
costly alternative method. It assumes that neither 
method can provide a true measure and so seeks to 
determine how much the two methods agree and 
whether they are interchangeable in practice. Both 
methods are applied to the same observations. 
Then, the difference between the measures for each 
observation is calculated to compute the mean 
difference (𝑑̅). If the mean difference is non-zero, 
then this indicates there is a relative bias.  

A range, in which most differences between 
measurements by the two methods will lie, is called 
the limit of agreement (𝐿𝑂𝐴). This 𝐿𝑂𝐴  can be 
determined using parametric and non-parametric 

approaches (Bland and Altman, 1999). In this 
study, we take a non-parametric approach as the 
distribution of between-method differences (i.e., 
difference in human ratings) is not well-known. 
First, we order the differences observed from least 
to greatest. Then, we remove 5% of the observed 

differences beginning with the most extreme from 
either end of the distribution. After removing those 
extreme differences, we report the 𝐿𝑂𝐴 by finding 
the difference of the remaining two endpoints of 
the observed differences.  

There is a related graphical representation, 
referred to as a Bland-Altman plot. It plots the 
average of the two methods against the difference 
of the two methods for each observation. Figure 1 
shows a Bland-Altman plot of two simulated 
measurements of 100 lesson observations. The first 
and second measure observations range between 1 
and 7. In Figure 1, we see that 𝑑̅ = 0.08  and 
𝐿𝑂𝐴 = 10 . From this Bland-Altman plot, we 
interpret there is little to no relative bias when 𝑑̅ is 
close to 0 and we could say that for 95% of 
observations, a measurement by the first approach 
would differ no more than ±5  units from the 
second approach. If 𝐿𝑂𝐴 ≤ 10  is negligible in 
practice, then we may conclude the two methods 
for measuring are interchangeable.  

3 Current Study 

3.1 Video Data 

Videos of elementary instruction used in this study 
were collected as part of a previous research study 
known as the Developing Ambitious Instruction 
(DAI, Youngs et al., 2022). The DAI focused on 83 
beginning elementary teachers who graduated 
from teacher preparation programs at five 
universities in the United States either in 2015-16 
or 2016-17. After graduation, these individuals 

 
Figure 1: A Bland-Altman plot of two simulated 

measurements. 
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started teaching young children (ages 5 to 11) full-
time in grades K-5 in general education settings. 
The DAI team observed each teacher as they taught 
mathematics and English language arts (ELA) at 
least six times each during their first two years of 
full-time teaching (i.e., three times each for 
mathematics and ELA per school year). Each 
video-recorded lesson was about 45 minutes in 
length and the current study used a total of 360 
hours of video from over 400 lessons.  

3.2 Scoring of Lesson Videos with M-Scan 

As part of the DAI study, videos of mathematics 
lessons were assigned scores with M-Scan by at 
least one human rater. The following steps were 
taken to train M-Scan raters and ensure high levels 
of reliability. First, each rater watched three videos 
of elementary mathematics lessons, assigned 
scores for each M-Scan domain, and reviewed the 
master ratings and justifications. Raters then met 
with the master rater and watched video clips that 
exemplified different scores on each of the M-Scan 
dimensions and practiced rating two additional 
lessons. To determine if raters met certification 
requirements, raters independently coded a series 
of lessons without conferring with the master rater; 
then they met with the master rater to confer on 
scores. The master rater computed agreement 
scores (at least 80% exact or adjacent matches were 
required), identified items that were sources of 
systematic error, and looked at convergence of 
ratings. If a rater did not meet the 80% threshold, 
they were required to rate an additional two 
lessons. On a regular basis, the master rater 
conducted a meeting in which raters viewed, 
coded, and discussed one or two lessons from the 
reliability set. These meetings were used to monitor 
raters’ ongoing performance. 

3.3 Annotations of Videos 

For the purpose of training a neural network, the 
team developed a list of 24 instructional activities 
for annotating the video dataset. For example, the 
annotation label of Using or holding an 
instructional tool was developed in reference to the 
M-Scan dimension Students’ Use of Math Tools. 
Prior to annotating the video dataset, annotators 
went through training on how to apply the 
classroom-based activity labels. At the end of the 
training, annotators’ performance was periodically 
monitored (Foster et al., 2024c). 

3.4 Neural Network Model for Instructional 
Activity Detection 

From our prior investigation, we found The 
Background Suppression network (BaS-Net, Lee et 
al., 2020) was advantageous for detecting activities 
in classroom videos (Foster et al., 2024b). The 268 
hours of video recordings were used to train and 
test a modified BaS-Net to detect the 24 
instructional activity labels, which we call BaS-
Net+. In our experimental setup, training and 
testing sets were split 80 and 20 percent 
respectively. In comparison to previous reported 
results (Foster et al., 2024a), we restructured the 
testing set so that it did not feature any of the 
teachers from the training set. Once the neural 
network was trained and tested on 268 hours from 
DAI dataset, we then used it to detect the 24 
instructional activities in an evaluation set 
featuring 92 additional math lessons.  

3.5 Random Forest Classifiers for M-Scan 
Scoring 

Random forest classifiers were used to predict 
scores for each M-Scan dimension. We developed 
the random forest classifiers with the package 
randomForest in R (Breiman, 2001). All 24 
instructional activity labels generated by human 
annotations were used as initial predictors for each 
of the nine M-Scan dimensions scores.  Each 
random forest included 41 decision trees with the 
mtry hyper-parameter set between 3 and 5 features 
at each step of branching. 

After building the random forest classifiers, we 
applied them to the aggregated data in the 
evaluation set that was generated by BaS-Net+. We 
then compared the predicted score by the random 
forest classifiers to human scores. 

3.6 Measuring Interrater Agreement and 
Reliability 

We report agreements as ratings that agree exactly 
or differ by no more than 1 point (Lawlis and Lu, 
1972), which we denote as 𝑝! and 𝑝". These levels 
of agreement are often used in practice with human 
raters for M-Scan (Walkowiak et al., 2018). For 
interrater agreement, we also report a descriptive 
index of agreement, developed by Tinsley and 
Weiss (1975), called the 𝑇-index: 

 𝑇 = !!"!#"
!"!#"

  (1) 
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where 𝑁#  is the number of agreements, N is the 
number of ratings, and 𝑝$   is the probability of 
chance agreement of an individual. If 𝑇 is positive, 
then the observed agreement is greater than 
agreement that would occur by chance. If 𝑇  is 
negative, then the observed agreement is less than 
chance agreement. When 𝑇  is zero, then the 
observed agreement is equal to the expected chance 
agreement. There is also a nonparametric chi-
square test of significance for the 𝑇-index (Lawlis 
and Lu, 1972; Tinsley and Weiss, 2000). We use 𝑇! 
and 𝑇"  to indicate the index that corresponds to 
exact agreement and within one point agreement, 
respectively.  

To report any relative bias between machine and 
human ratings, we report the mean difference 6𝑑̅7. 
A positive mean difference indicates on average the 
machine scored higher than the human raters while 
a negative value indicates on average the human 
scored relatively higher for a given dimension of 
M-Scan. We use a threshold of 𝑑̅ > 0.20  to 
conclude a possible relative bias between machine 
and human ratings.   

When reporting interrater reliability for ordinal-
scaled ratings, we use Finn’s coefficient (𝑟%) and 
Gwet’s 𝐴𝐶& for their respective advantages. Both 
indices range between 0 and 1 with higher values 
indicating higher levels of consistency between 
raters. A nonparametric chi-square test for 
significance is available for 𝑟%  and 𝐴𝐶& . Finn’s 
coefficient is recommended for use when the 
within-raters variance is highly constrained and to 
use a 𝑝 < 0.01 for applied research (Tinsley and 
Weiss, 2000). It does not require independent 
subjects, which in our use case is important as some 
of the lessons were taught by the same teacher. 
Gwet’s 𝐴𝐶&  is a generalization of Gwet’s 𝐴𝐶" 
(Gwet, 2008) and it does not assume all raters will 
be paired randomly for each observation. 

3.7 Comparing Methods of Double Scoring 

To determine two methods are interchangeable, 
the Bland-Altman method requires specificity 
beforehand as to how small the 𝐿𝑂𝐴 should be to 
conclude that either method is sufficient in 
practice. This decision is a practical one, not a 
statistical decision (Bland and Altman, 1999). 
Practitioners should provide a strong rationale for 
this decision. We decided to use what has been 
observed in prior research with human raters as the 
“gold standard,” although some could argue this 

may not be sufficient evidence (White and 
Ronfeldt, 2024). With expert human raters scoring 
with M-Scan, it was found that they agreed exactly 
66.7% and within one point 97.6% of the time 
(Walkowiak et al., 2018). Thus, we decided to use 
65% exact agreement and 95% agreement within 
one point. We may conclude the two methods are 
interchangeable if they met or exceeded each of 
these levels of agreement if the 𝐿𝑂𝐴 ≤ 1. 
However, before we may make such a conclusion, 
we must check the assumption that there is no 
relation between the difference between the ratings 
and average ratings. We use Spearman’s rank 
correlation coefficient (𝜌)  to examine for any 
monotonic relations. We use the criteria |𝜌| >
0.30 to conclude the possibility of any monotonic 
relationship. 

4 Results 

4.1 Research Question 1: Agreement 

The exact agreement between human and machine 
scoring ranged between 10.9% to 58.7%. The 
corresponding 𝑇!-index values are listed in Table 2. 
Most 𝑇! -index values indicated little to no 
agreement between the scoring except for 
Mathematical Accuracy, which indicated moderate 
agreement (0.41	 ≤ 𝑇! < 0.60). Allowing for one 
point difference, we found the extended percent 
agreements of human and machine ratings between 
57.6% and 89.1% agreement. The corresponding 
𝑇" -index values range between 0.31 and 0.82. 
These are moderate to substantial (𝑇" ≥ 0.61 ) 
levels of agreement between human and machine 
ratings. Almost all agreements between human and 
machine ratings for each dimension of M-Scan 
were found to be statistically significant; thus, it is 
highly unlikely these levels of agreement were the 
result of chance.  
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Next, we report if there were any relative bias 

between the human and machine ratings. 
Examining the mean differences between the 
paired human and machine scores (see Table 3), we 
found a relative bias for nearly all the M-Scan 
dimensions. The human raters were, on average, 
rating higher scores in comparison to the random 
forest classifiers for some of the M-Scan 
dimensions (e.g., Problem Solving). On other 
dimensions, the random forest classifiers were, on 
average, scoring higher than the human raters (e.g., 
Explanation and Justification). No systematic bias 
was found for the dimensions of Use of 
Representation when observing the mean 
differences between the human and machine 
ratings.  

 

4.2 Research Question 2: Reliability 

For all dimensions of M-Scan, we found the 
interrater reliability between human and machine 
ratings to be more than substantial (> 0.600) and 
statistically significant (𝑝 < 0.001) according to 
Finn’s reliability coefficient (𝑟')	and Gwet’s 𝐴𝐶&. 
These interrater reliability statistics for each 
dimension of M-Scan are listed in Table 4. 

 

4.3 Research Question 3: Interchangeability 

In this section, we report whether the double 
scoring done by human and machine is 
interchangeable to the “gold standard” between 
human raters. For our purpose, we decided if we 
observed at least 95% agreement within the 𝐿𝑂𝐴 ≤
1	  and at least 65% exact agreement between 
human and machine ratings, then the double 
scoring done by human and machine would be 
interchangeable with the method of two human 
raters. Meeting this condition would indicate that 
the method of rating a lesson by a human rater and 
machine rater agrees sufficiently in practice. Table 
5 lists all the 𝐿𝑂𝐴 for each dimension of M-Scan. 
Before finding the 𝐿𝑂𝐴s using the Bland-Altman 
method, we checked the assumption needed that 
there is no relation between the difference between 
the ratings and average ratings using Spearman’s 
𝜌-statistic. As shown in Table 5, all dimensions 
except Problem Solving did not satisfy the needed 
assumption; thus, these 𝐿𝑂𝐴 should be interpreted 
with caution. Nevertheless, we found no evidence 
to suggest the method of pairing human raters with 
any of the random forest classifiers is 
interchangeable with the double scoring with two 
human raters. This conclusion came from the two 

M-Scan 
Dimension 

Interrater Agreement 
𝑇$ 𝑝$ 𝑇% 𝑝% 

Structure of the 
Lesson 

0.18*** 29.3% 0.70*** 81.5% 

Use of 
Representations 

0.09 21.7% 0.50*** 69.6% 

Students’ Use of 
Math Tools 

-0.04 10.9% 0.49*** 68.5% 

Cognitive 
Demand 

0.11* 23.9% 0.40*** 63.0% 

Math Discourse 
Community 

0.22*** 33.7% 0.50*** 69.6% 

Explanation and 
Justification 

0.14** 26.1% 0.52*** 70.7% 

Problem Solving 0.11* 23.9% 0.31*** 57.6% 
Connections and 

Applications 
0.18*** 29.3% 0.57*** 73.9% 

Mathematical 
Accuracy 

0.52*** 58.7% 0.82*** 89.1% 

*𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001 

Table 2:  Interrater agreements. 

 

 

 

M-Scan Dimension Mean Differences 
𝑑̅ 

Structure of the Lesson 0.48 
Use of Representations -0.03 
Students’ Use of Math Tools -0.23 
Cognitive Demand -0.82 
Math Discourse Community -0.64 
Explanation and Justification 0.73 
Problem Solving -0.99 
Connections and Applications -0.33 
Mathematical Accuracy 0.30 

Table 3:  Mean differences between machine and 
human ratings. 

 

M-Scan Dimension Interrater Reliability 
𝑟& 𝐴𝐶' 

Structure of the Lesson 0.812*** 0.855*** 
Use of Representations 0.765*** 0.851*** 
Students’ Use of Math Tools 0.621*** 0.757*** 
Cognitive Demand 0.800*** 0.814*** 
Math Discourse Community 0.812*** 0.860*** 
Explanation and Justification 0.722*** 0.838*** 
Problem Solving 0.702*** 0.706*** 
Connections and Applications 0.802*** 0.877*** 
Mathematical Accuracy 0.891*** 0.946*** 

*𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001 

Table 4: Interrater reliability 
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necessary criteria: the exact agreement was ≥65% 
and at least 95% agreement for a 𝐿𝑂𝐴 ≤ 2. 

 

5 Discussion 

Rater error is highly complex and so it is difficult 
to claim that raters are not significantly altering a 
measure such as instructional quality. Although 
interrater agreement and reliability provide some 
estimates of rater error, recent research suggests a 
precise measure of rater error requires more 
scoring occasions than what is typical (White and 
Ronfeldt, 2024). As a result, this means there is a 
significant need to double score a sizeable 
collection to capture a robust measure of rater error. 

One potential solution to meeting this size of 
double scoring is to develop an automated rater. We 
used our study as a context to illustrate an approach 
for determining whether double scoring when one 
of the raters is an automated scoring system is 
interchangeable with the “gold-standard” of two 
human raters. We drew on classroom observation 
systems research and methods comparison studies.  

In the context of this study, we found insufficient 
evidence that the method of double scoring the 
video by a human and machine was 
interchangeable with the “gold-standard” method 
of double scoring by two human raters. Although 
we found some agreement and reliability between 

the human and machine ratings, the current level of 
performance did not provide evidence for the 
ability to interchange the two methods as set by our 
outset criteria from what had previously been 
observed. We acknowledge decisions that we made 
may not be appropriate for every scoring design.  

However, this study goes beyond what is 
typically reported in findings about the 
performance of automated classroom observation 
systems, which typically detail the association 
between human and machine scores. This study 
also examined potential impacts on scoring design 
decisions as they relate to automated scoring such 
as double scoring when one rater is an automated 
system. This decision could have several 
consequences for rater monitoring and associated 
time and financial costs. There is a need for 
evaluators of these automated systems to consider 
methods and frameworks for addressing this issue 
and others that are beyond calibration between 
human and machine raters (c.f., Doewes et al., 
2023; Johnson et al., 2022; Rotou and Rupp, 2020; 
Williamson et al., 2012). 

Acknowledgments 
We would like to thank the members of the 
Artificial Intelligence for Advancing Instruction 
team and the Development of Ambitious 
Instruction team at the University of Virginia for 
their contributions. This work was supported by the 
National Science Foundation under Grant No. 
2000487 and The Robertson Foundation. 
Opinions, findings, and conclusions in this 
presentation are those of the authors and do not 
necessarily reflect the views of the funding 
agencies.  

References  
Karan Ahuja, Dohyun Kim, Franceska Xhakaj, Virag 

Varga, Anne Xie, Stanley Zhang, Jay Eric 
Townsend, Chris Harrison, Amy Ogan, and Yuvraj 
Agarwal. 2019. Edusense: Practical classroom 
sensing at scale. Proceedings of the ACM on 
Interactive, Mobile, Wearable and Ubiquitous 
Technologies, 3(3):1–26. 

D. G. Altman and J. M. Bland. 1983. Measurement in 
medicine: The analysis of method comparison 
studies. Journal of the Royal Statistical Society. 
Series D (The Statistician), 32(3):307–317. 

Djamila Romaissa Beddiar, Brahim Nini, Mohammad 
Sabokrou, and Abdenour Hadid. 2020. Vision-based 
human activity recognition: A survey. Multimedia 
Tools and Applications, 79(41):30509–30555. 

M-Scan Dimension Limit of 
Agreement 

Spearman’s 
Coefficient 

𝐿𝑂𝐴 𝜌 
Structure of the 

Lesson 
5* -0.37 

Use of 
Representations 

4* -0.99 

Students’ Use of 
Math Tools 

6* -0.80 

Cognitive Demand 5* -0.81 
Math Discourse 

Community 
4* -0.77 

Explanation and 
Justification 

5* -0.82 

Problem Solving 6 -0.24 
Connections and 

Applications 
4* -1.0 

Mathematical 
Accuracy 

3* -0.88 

Note: (*) indicates these LOA interpretations should be 
interpreted with caution as there is an association between 
the mean score and scoring difference, as evidenced by 
corresponding value of 𝜌, which does not satisfy one of the 
criteria for use of the Bland-Altman method.  

Table 5: Limits of agreement. 
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