@inproceedings{smirnova-etal-2025-numeric,
title = "Numeric Information in Elementary School Texts Generated by {LLM}s vs Human Experts",
author = "Smirnova, Anastasia and
Lee, Erin S. and
Li, Shiying",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.20/",
pages = "183--191",
ISBN = "979-8-218-84228-4",
abstract = "We analyze GPT-4o{'}s ability to represent numeric information in texts for elementary school children and assess it with respect to the human baseline. We show that both humans and GPT-4o reduce the amount of numeric information when adapting informational texts for children but GPT-4o retains more complex numeric types than humans do."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="smirnova-etal-2025-numeric">
<titleInfo>
<title>Numeric Information in Elementary School Texts Generated by LLMs vs Human Experts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Smirnova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erin</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiying</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>We analyze GPT-4o’s ability to represent numeric information in texts for elementary school children and assess it with respect to the human baseline. We show that both humans and GPT-4o reduce the amount of numeric information when adapting informational texts for children but GPT-4o retains more complex numeric types than humans do.</abstract>
<identifier type="citekey">smirnova-etal-2025-numeric</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.20/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>183</start>
<end>191</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Numeric Information in Elementary School Texts Generated by LLMs vs Human Experts
%A Smirnova, Anastasia
%A Lee, Erin S.
%A Li, Shiying
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F smirnova-etal-2025-numeric
%X We analyze GPT-4o’s ability to represent numeric information in texts for elementary school children and assess it with respect to the human baseline. We show that both humans and GPT-4o reduce the amount of numeric information when adapting informational texts for children but GPT-4o retains more complex numeric types than humans do.
%U https://aclanthology.org/2025.aimecon-main.20/
%P 183-191
Markdown (Informal)
[Numeric Information in Elementary School Texts Generated by LLMs vs Human Experts](https://aclanthology.org/2025.aimecon-main.20/) (Smirnova et al., AIME-Con 2025)
ACL