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Abstract

LLMs can address long-standing problems in
education, such as the lack of instructional ma-
terials, by generating grade-appropriate content.
We evaluate GPT-40’s ability to generate infor-
mational texts for elementary school children.
We specifically focus on the model’s ability
to represent numeric information in text, such
as fractions, ratios, and percentages, and as-
sess it with respect to the human baseline. The
analysis shows that both humans and GPT-40
reduce numeric information as texts get sim-
plified but do so to a different degree and in
a different manner: GPT-4o0 retains more per-
centages, while humans use more fractions and
ratios. We suggest that these strategies provide
different learning opportunities for students.

1 Introduction

Large Language Models (LLMs) have great po-
tential to improve the quality of education (Ab-
delghani et al., 2024; Han et al., 2024; Yan et al.,
2024). They can be used to address long-standing
issues in schools, such as shortage of teachers (Ed-
wards et al., 2024) or lack of good instructional
materials (Oakes and Saunders, 2004), by generat-
ing grade and age-appropriate educational content
for students (Scaria et al., 2024; Tan et al., 2025).
Diliberti et al. (2024) report that among teachers
who employ Al in the classroom, 48% use it to
adapt content to the appropriate grade level.

In this paper, we focus on LLMs’ ability to adapt
informational texts for elementary school children.
Informational texts contain quantitative informa-
tion and expose students to mathematical concepts
outside of the math curriculum. The introduction
of informational texts in schools in the US was
motivated by the demands of the technologically
advanced society and the need to develop quan-
titative literacy (numeracy) in general population
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(Agnello and Agnello, 2019; Bookman et al., 2008;
Steen, 1997, 1999).

Informational texts contain different types of nu-
meric information, as the following passage about
paleontological research demonstrates.

Reumer and two colleagues looked in the col-
lections of the Natural History Museum and the
Naturalis Biodiversity Center in Leiden, both in
the Netherlands, and found 16 samples of mam-
moth vertebrae from the base of the neck. Seven of
the samples were missing the part that would have
clued the researchers in on whether a cervical rib
had been attached. Of the remaining nine, six were
normal and three once had a cervical rib. That
worked out to an incidence of 33.3 percent.

Of particular interest here are the last two sen-
tences that allow students to understand how pro-
portions and percentages work.

LLMs’ ability to adapt informational text for a
specific grade level depends on their mathemati-
cal proficiency, their ability to understand quan-
titative information in text, and to represent it in
the form that is appropriate for elementary school
children. Mathematical proficiency can be consid-
ered an emergent ability in LLMs. McCoy et al.
(2024) argue that as a consequence of their design
— LLMs were trained to predict next word in text —
their performance on tasks that require quantitative
skills is sensitive to input probabilities. Thus, GPT-
4 performs well on a standard, high-frequency task,
such as Celsius-to-Fahrenheit conversion: multiply
by 9/5 and add 32, but is likely to underperform on
a task that has similar complexity but lower input
probability: multiply by 7/5 and add 31.

Previous work on LLMs’ mathematical profi-
ciency returned mixed results. Patel et al. (2023)
assessed the ability of GPT-3 model to simplify
math word problems for elementary school chil-
dren. They showed that GPT-3-generated texts
are simpler, but noted problems with accuracy. In
one instance, GPT-3 inaccurately simplified she
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gives each student an eighth of a foot of ribbon as
she gives each student 1 inch of ribbon. More ad-
vanced models perform better — GPT-4 shows 35%
improvement in accuracy on math problems com-
pared to GPT-3 (Mishra et al., 2024) — but not
at the domain expert level. Mishra et al. (2024)
demonstrated that GPT-40 tends to overrely on dec-
imal approximation when working with fractions.
Moreover, while GPT-40 showed 90% accuracy on
fraction addition tasks, its performance dropped to
61% when instructed to recompute the task with
one of the original fractions changed. These re-
sults suggest that LLMs’ numeric competence is
different from human competence (Lee et al., 2024;
Lucy et al., 2024).

In what follows, we evaluate LLMs’ ability to
adapt numeric information in texts for elementary
school children. While LLMs’ numeric compe-
tence is usually assessed on benchmark math tests,
we focus on LLMs’ ability to convey numeric in-
formation in the context of text simplification. Text
simplification involves the reduction of structural
and lexical complexity of a text, while maintaining
its meaning (Shardlow, 2014; Siddharthan, 2014).
It is a promising technique for generating age- and
grade-appropriate materials with LLMs (Patel et al.,
2023).

Previous work on LLMs’ ability to generate
grade-appropriate content by means of text sim-
plification mostly focuses on the overall readability
metrics (Murgia et al., 2023; Patel et al., 2023) or
lexical features (Valentini et al., 2023). In these
studies, the complexity of a text is operationalized
in terms of average word and sentence lengths (shal-
low textual features), as well as lexical and syntac-
tic features. Simplified texts have shorter words
and sentences, more concrete, age-appropriate vo-
cabulary, and simple clauses. These measures, how-
ever, do not evaluate how numeric information is
conveyed. Similarly to linguistic information, nu-
meric information can be conveyed at different lev-
els of complexity. Proportions, for example, can
be represented as fractions, ratios, and percentages
(Power and Williams, 2011), and the choice of
representation has implications for comprehension
and understanding (Bautista et al., 2011). Since
numeric information is not included in the standard
text complexity measures, little is known about
how well LLMs can simplify numeric information
in texts.

Our study addresses this gap by evaluating
LLMs’ ability to convey numeric information in

texts and assessing their performance vis-a-vis hu-
man experts. We chose to evaluate a particular
LLM, GPT-40 by OpenAl, one of the most ad-
vanced models at the time of writing. This choice
is motivated by GPT-40’s superior performance on
math tasks in comparison to other models (Lucy
et al., 2024; Mishra et al., 2024) and its widespread
use in education.'

Our evaluation of GPT-40 and human experts
focuses on two questions:

1. How does the amount of numeric information
change as texts get simplified?

2. How is difficult mathematical information
(proportions) represented in simplified texts?

We report two main findings. First, as texts
get simplified, the amount of numeric information
is reduced in both human-simplified and GPT-4o-
simplified texts. Crucially, GPT-40 reduces nu-
meric information to a greater extent than humans
do. Second, we find that humans and GPT-40 use
different strategies when simplifying complex in-
formation (proportions) with GPT-40 preserving
more complex numeric representation (percent-
ages).

2 Study 1: Amount of Numeric
Information

Numeric information imposes additional cognitive
demands on readers, and thus increases text com-
plexity (Agnello, 2021). We expect that the amount
of numeric information will decrease as texts are
adapted for lower grade levels.

2.1 Data

Our texts come from Newsela, a provider of educa-
tional materials for K-12 curriculum. The Newsela
corpus (Xu et al., 2015) is a parallel corpus of infor-
mational texts, consisting of the original texts and
the corresponding human-simplified texts. There
are 5 levels of text complexity within the corpus,
from the most complex (level 0) to the least com-
plex texts (level 4). As Figure 1 shows, the distribu-
tion of texts by grade and complexity levels is not
uniform, with the two largest subsets being texts
for grade 12, level O (the most complex texts) and
texts for grade 4, level 4 (the most simplified texts).
These are the two grade levels that we choose to
analyze in our study.

1https://openai.com/index/
introducing-chatgpt-edu/
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Figure 1: Distribution of texts by grade and simplifica-
tion level in Newsela corpus.

2.2 Constructing Three Corpora

Our analysis is based on a subset of the Newsela
corpus (original and human-simplified texts) and
the corresponding GPT-40-generated texts. For the
original corpus, we randomly selected 100 Newsela
texts for grade 12, level 0. To construct the human-
simplified corpus, we matched these original texts
with the corresponding 100 simplified texts for
grade 4, level 4. We generated the corpus of GPT-
4o-simplified texts by submitting 100 original texts
as input to GPT-40 model with instructions to sim-
plify.

We used OpenAl API (model = GPT-4o, tem-
perature = 1) with zero-shot prompting strategy.
The prompt was designed to match the style (in-
formational texts), grade level (grade 4), and the
average length of texts in human-simplified cor-
pus. Thus, since the average number of words in
human-simplified texts for grade 4, level 4 was 680,
this length requirement was specified as part of the
prompt. The prompt was formulated as follows:
“In approximately 680 words, simplify the text be-
low for a fourth-grade reading level written in the
newspaper genre.”

We did not specifically instruct the model to sim-
plify numeric information. This choice is motivated
by the consideration to keep instructions for LLMs
and humans as similar as possible (Lampinen,
2024). Since human experts in Newsela use read-
ability scores (Lexile) to guide their simplification
process (Agnello, 2021), and since these scores
do not take numeric complexity into account, nu-
meric complexity was not referenced in the prompt
to GPT-40. Thus, neither human experts nor the
model are specifically instructed to simplify nu-
meric information.

We manually examined GPT-4o-simplified texts

for hallucinations and found none. Moreover, our
analyses showed that GPT-40 can adequately re-
duce textual complexity for a specific grade level
(Smirnova et al., 2025).

2.3 Extracting Numeric Expressions

Our definition of numeric expressions is based
on Agnello (2021). Numeric expressions include
counts and measures, arithmetic operations, frac-
tions, percentages, ranges, and others.? To extract
numeric expressions from texts, we designed a reg-
ular expression-based pipeline. Texts were lightly
preprocessed to normalize special characters and
whitespace, while pattern matching was performed
case-insensitively to maximize coverage. Regular
expressions were then applied to the preprocessed
texts, and sentences containing numeric matches
were extracted using rule-based splitting. The re-
sults were recorded in three output files for original,
human-simplified, and GPT-4o-simplified texts.

2.4 Results

We computed the average number of numeric
expressions in the three corpora. The original
texts (M=23.55, SD=14.42) contain more numeric
expressions compared to both human-simplified
(M=12.36, SD=7.15) and GPT-40-simplified texts
(M=9.45, SD=7.10) (see Figure 2). The differ-
ence in the distribution of numeric expressions in
original and human-simplified texts was statisti-
cally significant on a paired t-test (t(99)=9.042,
p<0.00001), and so was the difference between
original and GPT-4o-simplified texts (t(99)=11.698,
p < 0.00001). Importantly, the difference be-
tween GPT-4o-simplified and human-simplified
texts was also statistically significant (t(99)=4.097,
p=0.0001).

Fewer numeric expressions in GPT-4o-
simplified texts might suggest that these texts
are simpler compared to the corresponding
human-simplified texts. However, the number
of numeric expressions alone is not sufficient to
address this question. In Study 2 we analyze how
different numeric expression types are distributed
in simplified texts.

2See https://github.com/sub-mit/numeracy for the
full list of numeric expression types, the corresponding regular
expressions and the examples of sentences they match.
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Figure 2: Numeric expression means for original,
human-simplified, and GPT-4o-simplified texts. Error
bars are +/-1 standard error.

3 Study 2: Complexity of Numeric
Expressions

In this study we analyze how proportions are ex-
pressed in texts. Proportions can be represented
as percentages (25 percent), fractions (one-fourth),
and ratios (one in four) (Power and Williams, 2011).
The analyses of educational materials and stud-
ies with human participants showed that percent-
ages are the most complex numeric expression type
(Bautista et al., 2011; Power and Williams, 2011;
Wu, 2011). As texts become simplified, we ex-
pect that the percentages in the original text will
be replaced with other expressions that can convey
proportions.

3.1 Percentages in Original Texts

From the list of sentences with numeric expres-
sions in original texts (Study 1), we extracted all
sentences that mention "percent”. There was a total
of 120 unique sentences (types) from 47 texts. Sev-
eral sentences contained multiple numeric expres-
sions with "percent" in them. Each such expression
was treated as an independent token. As a result,
we ended up with a total of 147 token sentences
referencing percentages.

3.2 Passage Alignment

In order to analyze how percentages from the orig-
inal texts were represented in the corresponding
human-simplified and GPT-4o-simplified texts, we
implemented fine-tuned Neural Conditional Ran-
dom Field (CRF) passage alignment algorithm by
Jiang et al. (2020). The alignment is based on the
similarity score between passages.

The Neural CRF model is specifically designed
for sentence alignment tasks in text simplification
(Jiang et al., 2020). It employs a linear-chain CRF
integrated with neural network components to align
complex and simplified text pairs. The alignment
sequence is determined by combining semantic
similarity scores derived from fine-tuned BERT
embeddings with transition features that reflect sen-
tence order within parallel documents. We select
this model for aligning our Newsela corpora be-
cause it was trained on Newsela-style datasets, and
the authors have provided a version specifically
fine-tuned for Newsela sentence alignment.

Our alignment process consisted of two steps
described below, data preprocessing and the identi-
fication of the most similar passage.

3.2.1 Data Preprocessing

Newsela passages are smaller than para-
graphs; they contain one or more sentences.
To each Newsela passage we assigned a
unique passage_id, formatted as follows:
{corpus_type}__{slug}__{language}__
{n_passage}.

* corpus_type:

— source_files_gradel2: the corpus of orig-
inal source texts;

— human_simplified_grade4: human-

simplified texts for grade 4;
— llm_simplified_grade4: the corpus of
GPT-4o-simplified texts;

* slug: the slug of the article from which the
passage is extracted, e.g. afghan-taxidriver;

* language: the language of the passage;

* n_passage: if the passage_a is the nth passage
in the article, then n_passage of passage_a is
n.

3.2.2 Getting The Most Similar Passage

The program compares each passage in the origi-
nal text corpus with every candidate passage in the
simplified corpora using the passage-to-passage_id
map which provides information about the article.
We followed the notebook provided by Jiang et al.
(2020) to build our own passage alignment pipeline
and used their pre-trained fine-tuned Newsela sen-
tence alignment model for our tasks. For each
article within a simplified corpus, we identified and
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Text type Text passage rl;;fl;:erlc
Oricinal text Halloween is crucial to the company, accounting for 25 percent Percentages
£ of Party City’s $1.6 billion in annual retail sales. &
Party City is a big retailer. It has many stores. Halloween is very
Human- . . .
. important to the company. One-quarter of its sales each year | Fraction
simplified
come from Halloween.
Party City is another big store. It sells Halloween items in regular
GPT-4o- . .
. stores and special Halloween City stores. Halloween makes up | Percentages
simplified .
25% of Party City’s sales.

Table 1: Types of numeric information in aligned passages from original, human-simplified, and GPT-4o-simplified

texts.

selected the passage that had the highest similar-
ity score as the aligned passage. The results were
recorded as an aligned triplet of original — GPT-
4o-simplified — human-simplified passages with
similarity scores for subsequent analysis. See Ap-
pendix A for an example of aligned triplet with
similarity scores.

This implementation resulted in 147 aligned
triplets across three conditions (total of 441 pas-
sages, i.e. 147 x 3).

3.3 Qualitative Analysis and Coding

We manually examined all aligned triplets. This al-
lowed us to assess how accurately GPT-40 conveys
numeric information as well as alignment accuracy.
We did not find any numerical inaccuracies in GPT-
4o-generated texts, but we did find mismatches in
alignment. In cases of content mismatch within
a triplet, we consulted full texts side-by-side and
searched them for a better candidate to replace the
mismatched passage in either human-simplified or
GPT-4o0-simplified texts. We ended up replacing
53 passages (31 passage replacements in human-
simplified and 22 passage replacements in GPT-4o-
simplified texts).

We manually coded how numeric expressions
referencing percentages were represented in sim-
plified texts. Based on the previous literature (Ag-
nello, 2021; Bautista et al., 2011), we developed
a coding system consisting of 5 categories: Per-
centages, Ratio, Fraction, Non-numeric word, and
Dropped. Dropped means that the information was
absent in simplified texts. Non-numeric words,
such as quantifiers "few" and "many" convey in-
formation non-numerically. Of the remaining cate-
gories, fraction is the least difficult numeric expres-
sion. Ratio can be viewed as a complex fraction
(Wu, 2011) but it is less complex than percentages.

Num Type Humans GPT-4o
Percentages 4 30
Ratio 12

Fraction 18 1
Non-numeric 30 32
Dropped 83 75
Total 147 147

Table 2: Representation of percentages in human-
simplified and GPT-40-simplified texts.

Percentages are the most sophisticated way to rep-
resent proportions (Bautista et al., 2011). Table 1
presents an example of aligned passages and the
codes for numeric expressions.

3.4 Results: Complex Numeric Types

Chi-square test shows that there are statistically
significant differences between human-simplified
and GPT-4o-simplified texts in terms of the types
of numeric expressions used to represent percent-
ages (p < 0.00001, x2(16)=75.5). The agreement in
the choice of numeric expressions between human-
simplified and GPT-4o0-simplified texts is 53%. Ta-
ble 2 shows the distribution by type. Both GPT-40
and humans drop a substantial number of numeric
expressions with percentages. When this informa-
tion is preserved, GPT-4o0 tends to retain the same
numeric type, percentages, while humans tend to
use fractions and ratios.

4 Conclusion

In this study we evaluated GPT-40’s ability to con-
vey numeric information in texts simplified for ele-
mentary school children and compared its perfor-
mance vis-a-vis human experts. Study 1 showed
that both humans and GPT-40 reduce the number
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of numeric expressions as they simplify texts, but
GPT-40 does so to a greater extent. Since numeric
expressions increase text complexity, these results
might suggest that GPT-4o-simplified texts are less
complex. Study 2 showed that GPT-40-simplified
texts retain percentages, the most difficult numeric
type, to a greater extent than human-simplified
texts do.

Is GPT-40’s strategy less effective? While
linguistically and numerically difficult texts can
present a challenge for the reader, they can also
provide a unique learning opportunity.The analy-
sis of GPT-40-generated passages shows that per-
centages are presented in a way that is easy for a
child to understand. Specifically, these texts make
the relationship between numbers and percentages
transparent: Some samples were missing parts, but
of the nine they could study, three had a cervical
rib. This means around 33% of the mammoths had
these extra ribs. From this perspective, retention of
complex numeric expressions in GPT-40-generated
texts can be viewed as a learning opportunity, fos-
tering the development of numeracy in elementary
school children. At the same time, simplifications
that avoid difficult content might ultimately slow
down learners’ progress (Crossley et al., 2014).

5 Limitations

There are several limitations that arise from the
novelty and complexity of the phenomenon un-
der consideration. First, while our choice of
GPT-40 model is motivated by its capabilities and
widespread application in educational context, it is
not clear whether these results will generalize to
other LLMs.

Second, we analyzed representation of numeric
information in a context of a general text simpli-
fication task, but we did not discuss how numeric
complexity is related to linguistic complexity. Just
as numeric and linguistic features interact in word
problem tasks (Daroczy et al., 2015, 2025), lin-
guistic factors can affect representation of numeric
information in educational texts.

Finally, we operationalized numeric complexity
as (i) the amount of numeric information and (ii)
the type of numeric information in texts. While
these are standard measures of numeric complex-
ity (Agnello, 2021; Bautista et al., 2011), there are
limitations to the approach that is based solely on
the distributional frequency of numeric expressions
in text. Text comprehension by the intended end

users, elementary school children, can serve as ad-
ditional evaluation metrics for assessing the quality
of informational texts generated by LLMs. A com-
prehension study can directly compare different
numeric simplification strategies, contrasting texts
that retain complex numeric types (percentages)
with texts that represent the same information as
fractions or non-numeric words.
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A Appendix: Passage Alignment

The program compares each passage in the original
text corpus with every candidate passage in the
simplified corpora based on the similarity scores.
Table 3 presents an example of an aligned triplet
with similarity scores.
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Slug Original passage Human-simplified | Human- | GPT-4o- GPT-4o-
passage simplified:| simplified passage | simplified:
Similar- Similar-
ity Score ity Score
predatoryfish-| The removal of | The result is some- | 0.9997756 | Overfishing  big, | 0.9971335
decline top predators has | thing called "fish- important fish in

been called "hu-
mankind’s  most
pervasive influence
on nature," and it
is as detrimental in
the sea as it is on
land. Consumers
prefer  predatory
fish like grouper,
tuna, swordfish
and sharks to
species lower on
the food chain such
as anchovies and
sardines, providing
strong incentives
for fishermen to
catch the bigger
fish. Going after
the more valuable
predators first, fish-
ing them until there
aren’t enough left
to support a fishery
and then moving on
to species lower in
the food chain, a
pattern sometimes
observed in global
fisheries, has been

called "fishing
down the food
web."

ing down the food
web." Fishermen go
after the more valu-
able predators first.
They fish them until
there aren’t enough
left.  Then they
move on to smaller
fish that are lower
on the food chain.
The bigger fish start
to disappear

the sea is causing
trouble. People like
to eat big fish like
tuna, swordfish,
and sharks. These
are called predatory
fish because they
eat smaller fish.
Because  people
want to eat these
fish, fishermen
catch a lot of them.
Once there aren’t
many big fish left,
they move on to
catching  smaller
fish like anchovies
and sardines. This
is known as "fish-
ing down the food
web."

Table 3: Example of passage alignment and similarity scores.
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