@inproceedings{beigman-klebanov-etal-2025-towards,
title = "Towards evaluating teacher discourse without task-specific fine-tuning data",
author = "Beigman Klebanov, Beata and
Suhan, Michael and
Mikeska, Jamie N.",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.21/",
pages = "192--200",
ISBN = "979-8-218-84228-4",
abstract = "Teaching simulations with feedback are one way to provide teachers with practice opportunities to help improve their skill. We investigated methods to build evaluation models of teacher performance in leading a discussion in a simulated classroom, particularly for tasks with little performance data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beigman-klebanov-etal-2025-towards">
<titleInfo>
<title>Towards evaluating teacher discourse without task-specific fine-tuning data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Suhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamie</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Mikeska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>Teaching simulations with feedback are one way to provide teachers with practice opportunities to help improve their skill. We investigated methods to build evaluation models of teacher performance in leading a discussion in a simulated classroom, particularly for tasks with little performance data.</abstract>
<identifier type="citekey">beigman-klebanov-etal-2025-towards</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.21/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>192</start>
<end>200</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards evaluating teacher discourse without task-specific fine-tuning data
%A Beigman Klebanov, Beata
%A Suhan, Michael
%A Mikeska, Jamie N.
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F beigman-klebanov-etal-2025-towards
%X Teaching simulations with feedback are one way to provide teachers with practice opportunities to help improve their skill. We investigated methods to build evaluation models of teacher performance in leading a discussion in a simulated classroom, particularly for tasks with little performance data.
%U https://aclanthology.org/2025.aimecon-main.21/
%P 192-200
Markdown (Informal)
[Towards evaluating teacher discourse without task-specific fine-tuning data](https://aclanthology.org/2025.aimecon-main.21/) (Beigman Klebanov et al., AIME-Con 2025)
ACL
- Beata Beigman Klebanov, Michael Suhan, and Jamie N. Mikeska. 2025. Towards evaluating teacher discourse without task-specific fine-tuning data. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers, pages 192–200, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).