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Abstract

Teaching quality is one of the determinants of
student outcomes. Teaching simulations with
feedback are one way to provide teachers with
practice opportunities to help improve their
skill. We investigated methods to build evalu-
ation models of teacher performance in lead-
ing a discussion in a simulated classroom with
the goal of providing feedback, particularly for
tasks with little performance data.

1 Introduction

Teaching quality is one of the determinants of stu-
dent outcomes (Blömeke et al., 2016; Fauth et al.,
2019). The theory of practice-based teacher edu-
cation (Ball and Cohen, 1999) argues that teachers
need opportunities to practice core teaching skills,
such as engaging students in the disciplinary dis-
course practices and leading classroom discussions,
in situations of reduced complexity (Grossman,
2021; Forzani, 2014). For such practice opportu-
nities to be successful and impactful, they need to
be flexible, target specific difficulties, and provide
learning support, in the form of timely feedback
(McDonald et al., 2013; Mikeska et al., 2024).

Simulated classrooms are one environment pro-
viding such opportunities. They allow for strate-
gic reduction in task complexity so that aspects of
teaching can be isolated and practiced separately.
Simulations are used in teacher education in var-
ious forms, including peers role-playing students
(Davis et al., 2017; Masters, 2020), mixed-reality
simulations where trained actors play the students
(Bondie et al., 2021; Dieker et al., 2019), as well as
emerging work where AI agents role-play students
to help train teachers or tutors (Lim et al., 2025;
Pan et al., 2025; Markel et al., 2023). Across all
these forms, feedback to the teacher on their perfor-
mance that would point out strengths and areas for
growth in a constructive and actionable manner is
critical (Cohen et al., 2020; Mikeska et al., 2023a).

Until recently, a bottleneck for creating auto-
mated feedback was acquiring a substantial amount
of data of learners performing the simulation. Such
data, with human scores, enabled the creation of
machine learning based evaluation models to power
automated feedback. With the advent of few-shot
learning with large language models, there is an
opportunity to mitigate the bottleneck, since only a
handful of examples might suffice for these models
to be able to evaluate a new learner’s performance.

The goal of this paper is to start exploring this op-
portunity through two research questions: (RQ1)
How accurately can a few-shot LLM evaluate a
teacher’s performance in a simulation? (RQ2)
How do these results compare to an alternative
method – a generic model fine-tuned on data from
other tasks and used to evaluate performance in a
new task? The latter approach has been success-
ful in large-scale essay scoring, where a model
trained on essays responding to a variety of essay
prompts is used to evaluate essays from new, un-
seen prompts (Ramineni and Williamson, 2013).
However, results might depend on data representa-
tion. The relatively content-agnostic essay scoring
features may have been responsible for the success;
recent reports suggest that transformer-based fine-
tuned models do not generalize well across prompts
(Shermis, 2024). To our knowledge, this is the first
exploration of few-shot vs. generic fine-tuned mod-
els for evaluating teacher discourse in the absence
of fine-tuning data for a task-specific model.

2 Related work

2.1 Digital teaching simulations with feedback
as a learning opportunity for teachers

Using digital teaching simulations within teacher
education and professional development programs
can improve teachers’ instructional skills, beliefs,
and knowledge (Francis et al., 2018; Lee et al.,
2024). Simulations are typically integrated into
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these learning environments via cycles where teach-
ers prepare for, engage in, and reflect on their per-
formance, as well as receive formative feedback
on how well they have enacted specific aspects
of teaching (Mikeska et al., 2023b; Pecore et al.,
2023). Recent research has shown that timely, per-
sonalized feedback is important to propel teachers’
learning from digital teaching simulations (Cohen
et al., 2020; Garrett et al., 2020; Mikeska et al.,
2023a). Yet, such feedback is hard to scale, as
generating it relies on extensive human resources.

2.2 Automated evaluation of teacher discourse
Recent work on automated evaluation of classroom
discourse using pre-trained LLMs has explored
fine-tuning (Kupor et al., 2023; Nazaretsky et al.,
2023; Xu et al., 2024; Ilagan et al., 2024), zero/few-
shot learning (Wang and Demszky, 2023; White-
hill and LoCasale-Crouch, 2024; Hou et al., 2024;
Asano et al., 2025), or both (Chen, 2023; Tran et al.,
2024). Xu et al. (2024) noted that results are better
for aspects of teaching that require less pedagogi-
cal expertise. None of these studies systematically
investigated generalization across content domains,
topics of discussion, or other aspects of classroom
discourse.

3 Feedback in a teaching simulation

The context of this paper is ongoing work on de-
veloping new tasks for digital teaching simulations
focused on the core teaching competency of lead-
ing a math or science argumentation-based discus-
sion in an elementary classroom. After engaging in
a simulation, teachers receive an automated feed-
back report. The report was designed by teacher
education researchers and professionals to cover in-
dicators of teaching quality (Mikeska et al., 2024).
For each indicator, the report provides a compari-
son to a typical high-quality discussion and shows
utterances where the target behavior did and did not
occur; see Figure 1. The high-quality discussions
are those that received a high score on a holistic
rubric such as shown in Table 1. The comparison to
high-quality discussions shows whether the teacher
has engaged in the target behavior often enough.

4 Method

4.1 Data
We use data collected in multiple studies where a
simulation was used as part of pre-service teacher
coursework (Mikeska et al., 2023b, 2022). Before

the simulation, the teacher is shown the prior work
of two or three groups of simulated students; each
group is designed to have a specific knowledge
profile. For example, in task S1 students need to
identify the mystery powder – one of six known
powders – and the properties needed for the iden-
tification. The groups differ in what they think
the powder is and what properties are needed for
identification, as they explain in their prior work.
Teachers are given up to a week to prepare to lead a
20-min discussion with a specific learning goal. In
S1, the goal is to have the class reach consensus on
the mystery powder and the necessary properties to
identify it. In another task (M1), the goal is reach-
ing consensus on methods for ordering fractions
with different numerators and denominators.

Figure 1: A screenshot of a part of a feedback report for
indicator 1b – elicitng meaningful student contributions.

1 [Beginning] The teacher does not make any use of
student ideas during the lesson.

2 [Developing] The teacher makes use of some student
ideas in a limited way. This can mean: A missed
opportunity to move the lesson forward; Only occa-
siona use of students’ ideas when there were multiple
opportunities throughout the lesson; An attempt was
made to use the students’ideas, but the teacher did not
do so in a way that moved the lesson forward.

3 [Well-prepared] The teacher makes use of student
ideas to move the lesson forward.

Table 1: Holistic scoring rubric, indicator 1c.

Each discussion transcript was scored using a
multi-dimensional rubric (Mikeska et al., 2021).
Dimension 1 focused on the teacher’s skill in at-
tending to students’ ideas equitably. Dimension 1
covered three indicators: how well the teacher (1a)
incorporated all the key ideas that appear in the stu-
dents’ prior work into the discussion; (1b) elicited
meaningful contributions from all students; and
(1c) attended to and made use of each of the rele-
vant student ideas shared during the discussion. We
focus on 1b and 1c, for which raters scored teacher
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performance on the scale of 1–3 or 1–4 (allowing
scores like 1.3 or 2.7) and provided justifications
by selecting one or more specific teacher (1c) or
student (1b) utterances in the transcript where the
target behavior clearly did (label 1) or did not (la-
bel 0) occur. These justifications form the bulk of
the utterance-level annotations used in this study;
some additional selections were made by research
staff. Table 6 in the Appendix shows a snippet of
a discussion, with justifications. We collapsed the
top two levels on the 1-4 scale into score 3, as the
fourth level was originally added to separate out the
strongest performances. Table 1 shows the rubric
for indicator 1c. The inter-rater reliability was es-
timated on double-scored data from task S1: r =
0.52 for 1b and r = 0.53 for 1c, indicating moderate
agreement (Dancey and Reidy, 2007).

We use data from six discussion tasks, two in
science (S1, S2) and four in math (M1 through M4).
Table 2 shows short descriptions. For three tasks –
S1, M1, M2 – we have fine-tuning data. For S2,
M3, and M4 we have only data to evaluate models;
these three tasks will serve as the new tasks to
answer RQ2. Table 3 describes the test sets. Data
used to develop few-shot models and to fine-tune
the BERT model will be described with the models.

4.2 Models

4.2.1 Few-shot models

We implemented the model setup found to be the
best for assessing various aspects of classroom dis-
course in the literature: Tran et al. (2024) investi-
gated task formulations, zero vs few-shot, random
or selected examples, and length of context for
scoring models implemented using Mistral and La-
cuna LLMs. Across multiple constructs and both
LLMs, the authors found that an utterance-level
classifier with ten few-shot examples (4 positive, 3
negative, and 3 hard negative) and with four prior
utterances as context resulted in the best predic-
tion of human holistic scores when aggregated into
transcript-level scores. After sampling the test data
described in Table 3, we sampled 3 transcripts per
task to serve as sources of the ten examples for the
tasks S2, M3, and M4 for which we had little data
available. For tasks S1, M1, and M2, we sampled
one transcript at a time from a larger set until the
target 10 examples were identified. It took 8, 6,
and 5 transcripts for the three tasks, respectively.
Teacher education researchers and assessment de-
velopers selected the examples.

We use a state-of-art LLM, GPT-4o, and an open
source smaller model, DeepSeek-R1:7b (DS-R1),
distributed through Ollama 0.5.1,1 both with tem-
perature of 1.0 and default settings for all hyper-
parameters. Prediction is done on each utterance
three times; majority vote decides the final label.

The prompt is a template into which task-specific
information is put when the model is used to eval-
uate data from that task. The template elements
are the domain (math or science), task information
(e.g., identifying the mystery powder), learning
goal (see Section 4.1), and few-shot examples. Be-
low is the template of the GPT-4o prompt for 1c,
with few-shot examples appended as user and assis-
tant turns in the messages array sent to the model:
# Instructions

Answer yes or no to the following question:

Given the dialogue between a teacher and students in a {do-

main} classroom about {task_info}, in the last turn, did the

teacher attempt to make use of students’ ideas to move the

discussion towards the learning goal?

## Learning Goal

{learning_goal}

## Student names

Jayla, Will, Emily, Mina, Carlos

## Output structure

Output must be one of the following words:

yes

no

To take advantage of DeepSeek-R1’s "thinking",
the examples are included in the system prompt,
and the instructions for output structure state that
the answer should be on the last line of the output.

4.2.2 Fine-tuned models
We use the utterance-level binary classifiers for
indicators 1b and 1c originally developed for the
S1 task by Nazaretsky et al. (2023). For indica-
tor 1c, the teacher’s utterance to be classified is
represented as an embeddings vector and enriched
by the embeddings vector of the preceding student
utterance as context. For indicator 1b, we are clas-
sifying the students’ utterances as providing or not
providing a meaningful contribution, as evidence
for the teacher’s success in eliciting such contribu-
tions. Therefore, for indicator 1b, the target utter-
ances are students’ and the context is the preceding
teacher or another student’s utterance. The models
use Hugging Face DistilBERT2 base model (un-

1https://ollama.com
2https://huggingface.co/docs/transformers/

model_doc/distilbert
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M1 The teacher leads a discussion of three student-generated strategies for ordering the given fractions from least to greatest.
M2 The teacher leads a discussion with the students about an unconventional student-generated method for generating

fractions between two given fractions. The discussion is focused on the strengths and weaknesses of the strategy, and its
applicability to other situations.

M3 This discussion is grounded in students’ work on a story problem in which they have used fraction multiplication. Prior
to the discussion, the students individually critiqued one another’s work, making the critique aspect of argumentation
more clearly available to the teacher.

M4 This discussion focuses on students’ work to generate meaningful understandings and representations of division by a
fraction.

S1 The discussion focuses on reaching group consensus on the identity of an unknown powder based on its properties and
what is known about a set of common powders. In addition to identifying the mystery powder, students discuss which
properties are most useful and why.

S2 In this task, the teacher supports the students in discussion whether the amount of matter is conserved during a physical
change, in this case, the mixing of ingredients to produce lemonade.

Table 2: Task descriptions.

Task M1 S1 M2 S2 M3 M4
#transcripts 40 34 40 40 37 35

Indicator 1c:
#utts. (K) 1.8 1.5 1.5 1.8 1.8 1.5
#labeled utts. (K) .39 .29 .46 .63 .49 .89
Average score 2.3 2.4 2.4 2.5 2.4 2.4
Std of scores .60 .58 .60 .51 .50 .58
%1 in labeled utts. 52 67 71 27 60 69

Indicator 1b:
#utts. (K) 2.1 1.9 1.7 2.1 2.1 1.9
#labeled utts. (K) .60 .43 .62 .77 .74 .65
Average score 2.3 2.4 2.4 2.5 2.4 2.4
Std of scores .65 .57 .65 .45 .57 .68
%1 in labeled utts. 36 59 72 53 60 45

Table 3: Description of the test data. For each indicator,
we show the number of teacher (1c) or student (1b)
utterances, overall and labeled. Next are average and
std of the holistic transcript scores. The last rows show
the percentage of labeled utterances that have the label
1 (where the target behavior occurs).

cased, 66M parameters) (Sanh et al., 2019) with
PyTorch 2.2.2 (Paszke et al., 2019). Details of the
fine-tuning process and licensing information can
be found in the Appendix (see Technical Details).
We fine-tuned the classifiers on data from 120 tran-
scripts – 40 from each of M1, S1, and M2 – that
were sampled after the test data was partitioned
out.

4.3 Model Evaluation

We evaluate the models in two ways. First, we
use the utterance level data classified as 1 or 0 us-
ing rater justifications to evaluate the accuracy of
utterance-level predictions. We think about these
as "easy" data, in the sense used in the NLP and
machine learning literature to refer to clear-cut, un-
controversial cases – as opposed to "hard" cases
where human annotators disagree or where the cor-
rect label might be genuinely unclear (Leonardelli
et al., 2021; Loukina et al., 2018; Jamison and

Gurevych, 2015; Beigman Klebanov and Beigman,
2014). Having just "easy" evaluation data does not
allow for a comprehensive evaluation of utterance-
level predictions, but being able to classify the easy
cases correctly can serve as a first-cut test, as a
model that can’t handle the easy cases would have
low face validity. This evaluation most directly sup-
ports the feedback component where example class
1 and class 0 utterances are shown (see Figure 1).

The second evaluation is at the level of the
transcript, where we derive a holistic score from
utterance-level predictions (number of utterances
classified as 1) and compare it to the holistic score
provided by human raters. In the easy-vs-hard
framework, this evaluation includes both easy and
hard instances, since predictions are made on all
utterances, some of which are expected to be harder
than others. In the NLP literature, there is evidence
that for some tasks, training a model on only the
easy data results in better performance on not just
the easy test cases but on the hard ones, too (Jami-
son and Gurevych, 2015), presumably because the
system isn’t getting confused by training exam-
ples that could be ambiguous or controversial. The
transcript-level evaluation supports the feedback
where the overall statistics of the target behavior
in the current teacher’s discussion are compared to
those in high-quality discussions (see Figure 1).

5 Results

5.1 Utterance-level
Table 4 shows the results for the utterance level
classification. To answer RQ1: GPT-4o has average
accuracy of 0.73 across two indicators × six tasks,
range = 0.62–0.81, std = 0.064. DeepSeek-R1 is
much less successful, with average accuracy of
only 0.56, range = 0.38–0.69, std = 0.10.

To answer RQ2, we compare the performance
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of GPT-4o on tasks S2, M3, and M4 to that of the
BERT model fine-tuned on data from tasks M1, S1,
and M2. The average accuracy of the BERT model
on two indicators × three new tasks is 0.76, range
= 0.54–0.91, std = 0.13. The average accuracy
of the GPT-4o model on the same data is 0.72,
range = 0.63–0.81, std = 0.07. While BERT has
a higher average, it is more volatile, with a poor
performance of 0.54 on indicator 1c for task S2.

Comparing GPT-4o and BERT on the three tasks
on which BERT was fine-tuned – M1, S1, and M2 –
we observe that BERT shows stronger performance,
as expected. BERT’s average accuracy on two in-
dicators × three tasks is 0.81, range = 0.70–0.89,
std = 0.08. GPT-4o’s average accuracy on the same
data is 0.74, range = 0.62–0.79, std = 0.06. These
results indicate that it is worthwhile to fine-tune
a model on available data for scoring new perfor-
mances belonging to the tasks on which the model
was fine-tuned. For utterance-level scoring of data
from new tasks, one might want to go with GPT-
4o, as its performance is comparable to BERT’s on
average but more stable across tasks.

M1 S1 M2 S2 M3 M4
Indicator 1c:

BERT .73 .70 .87 .54 .91 .81
DS-R1 .53 .52 .69 .38 .47 .46
GPT-4o .62 .75 .79 .63 .73 .68

Indicator 1b:
BERT .84 .81 .89 .67 .81 .84
DS-R1 .50 .65 .69 .57 .69 .58
GPT-4o .77 .75 .78 .69 .81 .79

Table 4: Accuracy of classifying teacher utterances as
making use of student ideas or not (Indicator c) and stu-
dent utterances as providing a meaningful contribution
or not (Indicator b), on labeled test data. Best perfor-
mance per indicator per task is boldfaced. Gray back-
ground marks BERT performance on tasks on which the
BERT model was fine-tuned.

5.2 Transcript-level

Table 5 shows the correlations between the human
holistic indicator score and the number of teacher
(1c) or student (1b) utterances that were classified
as 1 (exhibiting the target behavior). To answer
RQ1: GPT-4o averages r = 0.46 across the two
indicators × the six tasks, range = 0.14–0.73, std
= 0.18. DeepSeek-R1 averages r = 0.44 for the
same data, range = .22–.64, std = 0.15. Thus, the
two few-shot models show comparable moderate

performance and substantial volatility across tasks.
To answer RQ2, we compare the few-shot mod-

els to BERT on the three new tasks – S2, M3, and
M4. BERT performs at r = 0.39 on average across
two indicators × three tasks, range = 0.19–0.57,
std = 0.14. GPT-4o average performance on the
same data is r = 0.32, range = 0.14-0.52, std =
0.13. DeepSeek-R1 averages r = 0.34, range =
0.22-0.51, std = 0.10. At the aggregate level of
the full transcripts, the generic fine tuned model
tends to show stronger performance than few-shot
models, although all the models achieve only low-
medium correlations with the human holistic scores
and are quite volatile.

Across the three tasks on which the BERT model
was fine-tuned (tasks M1, S2, M2), it outperforms
the few-shot models: BERT averages r = 0.67,
range = 0.55–0.79, std = 0.09. GPT-4o averages
r = 0.59, range = 0.45–0.73, std = 0.09. DeepSeek-
R1 averages r = 0.54, range = 0.33–0.64, std = 0.11.
For the transcript level, the results suggest that the
fine-tuned generic model is the model of choice.

M1 S1 M2 S2 M3 M4
Indicator 1c:

BERT .74 .59 .55 .32 .19 .41
DS-R1 .33 .63 .53 .22 .27 .32
GPT-4o .45 .62 .55 .35 .14 .22

Indicator 1b:
BERT .79 .70 .64 .50 .34 .57
DS-R1 .64 .59 .54 .32 .37 .51
GPT-4o .73 .62 .59 .36 .31 .52

Table 5: Pearson’s correlation between the human holis-
tic indicator score and the number of teacher utterances
automatically labeled exhibiting the target behavior.
Best performance per indicator per task is boldfaced.
Gray background marks BERT performance on tasks on
which the BERT model was fine-tuned.

6 Discussion

Our results suggest that a fine-tuned generic model
is worth creating if only to score the data from the
tasks it was fine-tuned on, as it shows stronger per-
formance than few-shot models in these cases, both
at the uttereance and at the transcript level. How-
ever, for evaluating data from new tasks for which
it is not feasible to fine-tune a model due to lack
of data, the situation is less clear-cut. In particular,
at the utterance level, the generic fine-tuned model
shows more volatile performance across tasks than
the few-shot one, failing to capture the "easy" dis-
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tinctions between utterances in one of the six eval-
uated cases (accuracy = 0.54 on task S2).

It could be that the S2 data is particularly difficult
to classify; however, since GPT-4o shows much
stronger performance, it is likelier that the class
distribution difference between the fine-tuning data
and the S2 data is to blame for BERT’s failure
of generalization for S2. Indeed, Table 3 shows
that S2 data had an exceptionally low proportion
of 1s – only 27%. This occasional generalization
failure of a generic fine-tuned model illustrates its
weakness compared to a few-shot model, namely,
its dependence on class distribution in the fine-
tuning data, to which the few-shot models are more
robust.

Another interesting finding is that the wide gap
between GPT-4o and DeepSeek-R1 at the utterance
level (average accuracy of 0.73 vs 0.56, respec-
tively) is closed almost entirely at the transcript
level (average correlations of 0.46 and 0.44, re-
spectively). Thus, while DeepSeek-R1 has worse
face validity, as it isn’t able to consistently tell
apart clear-cut cases of 0s and 1s, its aggregate per-
formance is similar to GPT-4o’s. To gain further
insight into this result, we checked the proportion
of utterances classified as 1. GPT-4o classified 69%
of all teacher utterances as 1 (indicator 1c). The
number is 57% for DeepSeek-R1. DeepSeek-R1
predicts many fewer 1s than GPT-4o, including
mis-classifying more "easy" 1s as 0s: The ratio
of the number of false negative predictions for the
labeled utterance-level data for DeepSeek-4o to
that of GPT-4o is 3.5:1, while the ratio of false
positives is 1:1. Still, the two systems make sim-
ilar relative judgments of which transcripts have
more utterances with the target behavior. Indeed,
GPT-4o’s and DeepSeek-R1’s transcript-level pre-
dictions correlate at r = 0.72 on average across
tasks for indicator 1c – a much stronger correlation
than either of them has with the human holistic
scores.

Finally, we observe that transcript-level perfor-
mance on M1, S1, and M2 is stronger than on S2,
M3, and M4, for both GPT-4o and BERT. It is not
the case at the utterance level, apart from S2. The
models were able to classify the "easy" utterance-
level labeled data, but that was not always sufficient
to be able to classify all cases – easy and hard – in
a reasonable way, that is, in alignment with the
tendency expected based on the holistic score. For
GPT-4o, limiting the number of transcripts to draw
the ten few-shot examples from to 3 may have re-

sulted in examples of lower quality – when we were
not limited by dataset size, we went through 5-8
transcripts to find good examples for S1, M1, and
M2. Going with fewer than 8-10 transcripts per
new task may not be advisable. For BERT, it is
apparently not enough to fine-tune on "easy" cases
to handle not only the "easy" cases for the new
tasks but the hard ones, too. In future work, we
will explore automated detection of harder exam-
ples. This should help focus the utterance-level
models on the easy ones (where the accuracy is
high) for picking examples for feedback. Identify-
ing harder cases in the unlabeled utterances from
the 120 fine-tuning transcripts, labeling them, and
adding to the fine-tuning data might help improve
BERT’s transcript-level performance on new tasks.

The current study has a number of limitations.
First, we experimented with a limited range of mod-
els; it is possible that results would change with
more effective prompts or different LLMs or more
sophisticated data representation for fine-tuning.
Second, we considered only two teaching quality
indicators; while it is encouraging that the results
are aligned between these two, further work is nec-
essary to evaluate robustness of the findings.

7 Conclusion

We investigated two approaches for evaluating
teacher performance in leading a discussion in a
simulated classroom in the context where no data
for fine-tuning on the specific discussion task is
available. One approach uses a few-shot LLM. The
other approach is a "generic" model fine-tuned on
data from other discussion tasks. We found that
the few shot model (GPT-4o) may be preferable for
analyzing utterance-level data, due to its more sta-
ble performance across tasks, while the fine-tuned
BERT model performed better in the aggregate,
transcript-level evaluation. Our results thus point
towards a way to capitalize both on few-shot learn-
ing and on previously collected data in order to
supply the most effective learning opportunity –
the one with timely automated feedback – even
when little prior data is available for the current
performance task.
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A Appendix

A.1 Example of the data

T: Mina and Will, why did you choose weight as
an important property?

M: Because it falls under some of the things that
we can see and measure.

T: Carlos, do you want to explain to them about
why you thought that weight wasn’t important?

C: Sure. Well, actually I don’t think weight is really
that important, because the weight of the object
doesn’t really change what the object is. If you
were to add more powder, it would change the
weight, but that doesn’t change what the powder is.

M: I guess I see what you mean by that, but I still
think that we found the correct thing.

T: Jayla and Emily, do have any other points to make
on the conversation of whether or not weight was
important?

E: Well, we did test the weight in ours because we
thought that testing all the properties would be
important, but now I’m starting to think about it.
I guess weight doesn’t really matter, since if we
were to add more or take away some of the powder
the weight would change, but it wouldn’t change
what the powder was, like Carlos was saying. So I
get that now.

T: Right. Will, Jayla, do you have any other points
that you want to make?

W: I guess I’m starting to see what Carlos means
by that.

T: Jayla?
J: Oh yeah, I can see where he was coming from.

Table 6: A snippet of a Mystery Powder (S1) discussion.
The blue-boldfaced teacher’s utterance was marked by
a human rater as an example of the teacher using a
student’s idea to move the discussion forward (indicator
1c), whereas the black-boldfaced utterance from Carlos
was marked as an example of a meaningful student
contribution (indicator 1b). T: Teacher. M: Mina. C:
Carlos. J: Jayla. W: Will. E: Emily.

A.2 Technical Details of the Models
Fine-tuning. The BERT models were fine-tuned
(including all transformer layers, the pooling layer,
and the final dense output layer) with Adam op-
timizer (learning rate = 1e-5, learning warmup =

600) to minimize the binary cross-entropy loss. We
used a grid search across 15 epochs with batch sizes
1, 4, and 8 for indicator 1c and across 10 epochs
with batch sizes 1, 4 and 8 for indicator 1b. The pa-
rameters were tuned using 7-fold cross-validation
on the fine-tuning data. For indicator 1c, we used 7
epochs with batch size 4. For indicator 1b, we used
3 epochs with batch size 4.

GPU hours. For indicator 1c, DistilBERT fine-
tuning was run locally on a desktop PC with an
NVIDIA GeForce RTX 3050 GPU and 16gb physi-
cal memory. All fine-tuning, including grid search
for all models, took 5 hours and 14 minutes. For in-
dicator 1b, DistilBERT finetuning was run locally
on a MacBook Pro with an Apple M2 Pro chip
(integrated GPU) and 16gb physical memory, and
took 14 hours and 57 minutes.

For both indicators, DeepSeek-R1 test set predic-
tions were run on the same PC, taking on average
97 minutes per transcript for indicator 1c and 66
minutes for indicator 1b. Predictions for fine-tuned
models were run on the same MacBook Pro, taking
on average 20 seconds per transcript for indicator
1c and 66 seconds per transcript for indicator 1b.
GPT-4o predictions were generated using the Batch
API via the Microsoft Azure OpenAI Service under
our organization’s subscription, which provides a
24-hour target turnaround for batch jobs.

Licensing of artifacts. The instance of GPT-
4o used is a proprietary AI model accessible via
Microsoft’s Azure OpenAI Service, subject to Mi-
crosoft’s licensing terms. Ollama and DeepSeek-
R1 are licensed under the MIT License. Distil-
BERT is licensed under the Apache License, Ver-
sion 2.0. PyTorch is licensed under the BSD-3-
Clause.
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