@inproceedings{walsh-etal-2025-using,
title = "Using {LLM}s to identify features of personal and professional skills in an open-response situational judgment test",
author = "Walsh, Cole and
Ivan, Rodica and
Iqbal, Muhammad Zafar and
Robb, Colleen",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.24/",
pages = "221--230",
ISBN = "979-8-218-84228-4",
abstract = "Current methods for assessing personal and professional skills lack scalability due to reliance on human raters, while NLP-based systems for assessing these skills fail to demonstrate construct validity. This study introduces a new method utilizing LLMs to extract construct-relevant features from responses to an assessment of personal and professional skills."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="walsh-etal-2025-using">
<titleInfo>
<title>Using LLMs to identify features of personal and professional skills in an open-response situational judgment test</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cole</namePart>
<namePart type="family">Walsh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodica</namePart>
<namePart type="family">Ivan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="given">Zafar</namePart>
<namePart type="family">Iqbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colleen</namePart>
<namePart type="family">Robb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>Current methods for assessing personal and professional skills lack scalability due to reliance on human raters, while NLP-based systems for assessing these skills fail to demonstrate construct validity. This study introduces a new method utilizing LLMs to extract construct-relevant features from responses to an assessment of personal and professional skills.</abstract>
<identifier type="citekey">walsh-etal-2025-using</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.24/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>221</start>
<end>230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using LLMs to identify features of personal and professional skills in an open-response situational judgment test
%A Walsh, Cole
%A Ivan, Rodica
%A Iqbal, Muhammad Zafar
%A Robb, Colleen
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F walsh-etal-2025-using
%X Current methods for assessing personal and professional skills lack scalability due to reliance on human raters, while NLP-based systems for assessing these skills fail to demonstrate construct validity. This study introduces a new method utilizing LLMs to extract construct-relevant features from responses to an assessment of personal and professional skills.
%U https://aclanthology.org/2025.aimecon-main.24/
%P 221-230
Markdown (Informal)
[Using LLMs to identify features of personal and professional skills in an open-response situational judgment test](https://aclanthology.org/2025.aimecon-main.24/) (Walsh et al., AIME-Con 2025)
ACL