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Abstract
Accurate prediction of item parameters using
item characteristics has been a long-standing
objective in educational measurement, and re-
cent advances in natural language process-
ing (NLP) and large language models (LLMs)
have opened new possibilities for modeling
item parameters directly from item text. In
this study, we introduce novel fine-tuning ap-
proaches that leverage item text as well as
structured item attribute variables for enhanced
prediction. For benchmarking, we compare
suggested approaches with a traditional tree-
based machine learning model that uses item at-
tributes as primary inputs. The proposed meth-
ods are evaluated on a dataset of over 1,000 op-
erational English Language Arts (ELA) items,
with both dichotomous and polytomous scoring.
Our work offers a unique opportunity to eval-
uate the prediction of item difficulty for poly-
tomous items as well as item discrimination—
areas that have received limited attention in
prior research.

1 Introduction

Item parameter prediction in educational measure-
ment refers to the modeling of item response the-
ory (IRT) model parameters such as difficulty by
using item-level features inherent in the items
(AlKhuzaey et al., 2024). Accurately and reliably
predicted item parameters offer multiple benefits.
First, it can reduce the heavy reliance on field test-
ing in evaluating new items, which is costly and
increases the risk of security breaches due to item
exposure (Ulitzsch et al., 2025). If non-functional
items, such as those that are too easy or not discrim-
inative, can be identified through predictive mod-
eling, test developers can save resources in vetting
new items. In addition, item parameter prediction
has broader implications beyond large-scale assess-
ments. If the methodology is sufficiently validated,

*Work conducted while the author was at Cambium As-
sessment.

it can be applied to classroom settings, where ed-
ucators evaluate how their own items align with
summative scales and make data-informed adjust-
ments to instructions.

Given its potential to support a wide range of as-
sessment activities, item parameter prediction has
been a long-standing objective in the field (Fischer,
1995; Ferrara et al., 2022). In particular, recent ad-
vances in natural language processing (NLP) tech-
niques has enabled researchers to leverage textual
information in items in predicting item parameters
(AlKhuzaey et al., 2024; Benedetto et al., 2023).
Researchers have utilized language models to ex-
tract surface-level linguistic features and/or to de-
rive embeddings to capture deeper semantic mean-
ings, which are then used as features in statistical
models or machine-learning (ML) algorithms (Xue
et al., 2020; Yaneva et al., 2019, 2023). More re-
cently, fine-tuning large language models (LLMs)
on item texts has shown improved predictive per-
formance compared to feature-based approaches
(Benedetto et al., 2021; Yaneva et al., 2024; Zu
and Choi, 2023). Given these recent findings and
ever-improving capabilities of LLMs, further in-
vestigation into the use of fine-tuned LLMs for the
item parameter modeling appears warranted and
timely.

1.1 Study Purpose and Contributions
The purpose of the current study is to examine
the performance of fine-tuned LLMs and explore
how they can be more effectively leveraged for the
item parameter prediction. To this end, the study
addresses several research questions that have re-
ceived limited attention in the existing literature.
First, it investigates ways to integrate textual infor-
mation from items with additional item attributes—
such as content classification variables—within a
fine-tuned LLM architecture. The study also com-
pares the performance of fine-tuned LLMs with
traditional machine learning algorithms to evalu-
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ate their relative performance. Third, the study
suggests methodologies for applying LLMs in the
prediction of parameters for polytomously scored
items, an area that has been underexplored. Finally,
the study investigates the capacity of fine-tuned
LLMs to predict discrimination parameters, which
has historically received less attention in item pa-
rameter modeling.

2 Prior Research on IRT Parameter
Prediction Using Fine-tuned LLMs

One of the key advantages of using LLMs is that
they can be further fine-tuned for a specific task on
top of its general linguistic capabilities obtained
from pre-training. Through fine-tuning, the model
parameters are optimized for a given task, enabling
improved performance on downstream applications.
Due to this flexibility and ability to directly model
textual input, fine-tuned LLMs have been increas-
ingly used to predict IRT parameters in the context
of educational assessments.

Benedetto et al. (2021) demonstrated that a fine-
tuned BERT model (Devlin et al., 2019) could ef-
fectively estimate difficulty parameters of Rasch
model (Rasch, 1993) using items from e-learning
platforms. They found that the fine-tuning ap-
proach reduced estimation error by 6.5% compared
to traditional feature-based ML approaches using
TF-IDF and embeddings. Zu and Choi (2023) also
examined performance of fine-tuned RoBERTa
model (Liu et al., 2019) in predicting item difficulty
parameters of autogenerated multiple-choice items
for English-language proficiency tests. By first
fine-tuning RoBERTa on a key classification task
subsequently adapting it for difficulty prediction,
they achieved stronger correlations—r = .733 for
listening and r = .684 for reading—compared to
traditional methods based on hand-crafted features
and embeddings.

Building on this line of work, Gombert et al.
(2024) explored fine-tuning various transformer-
based models to jointly predict both item difficulty
and response time for multiplice-choice items in
a medical licensure exam. They introduced archi-
tectural enhancements to LLMs by incorporating
scalar mixing and a custom regression head. While
their approach ranked first in a share task competi-
tion, their predictive power was relatively modest,
yielding a maximum correlation of .27. Using a
different dataset—math proficiency test data set
for adults, Feng et al. (2024) found that fine-tuned

RoBERTa achieved the best prediction, outperform-
ing linear regression and zero-shot prompting ap-
proaches in terms of minimizing mean squared
error, while explaining approximately 43% of the
variance in the difficulty.

3 Methods

While several studies have successfully fine-tuned
LLMs for item parameter prediction, to the best
of the authors’ knowledge, none have explored
the integration of item attribute variables—such
as content-wise classifications—directly within the
LLM fine-tuning process. Given that most opera-
tionally maintained items are accompanied by such
metadata, leveraging these additional features may
enhance the predictive performance of LLMs.

In addition, the dataset used in this study is no-
table for its diversity, encompassing a range of
item types that are currently operationally used in a
large scale assessment. As such, evaluating the per-
formance of the proposed methods on this dataset
can provide insights that are both methodologically
novel and practically relevant.

3.1 Dataset

The dataset used in this study consists of 1,119
items to assess English Language Art (ELA) profi-
ciency for Grade 6 students. These selected items
were drawn from the operational pool for the 2024-
2025 Smarter Balanced assessment administration.
The authors gratefully acknowledge the collabora-
tion and support of Smarter Balanced in providing
access to this high quality dataset.

These items span seven distinct item types, in-
cluding five machine-scorable types (EBSR, HT,
MC, MI, and MS) and two constructed response
types (SA, WER) (see Appendix A for the descrip-
tion of the item types). In this dataset, the machine-
scorable items were scored dichotomously, and
constructed response items were all scored poly-
tomously. The items were field-tested across 8
years (2014, 2015, 2016, 2017, 2018, 2019, 2020
and 2022), and include 935 summative items and
184 interim ones. The actual counts of the item
types across the field-tested years can be found in
Appendix B.

Two Sources of Information: Texts and Item
Attributes. Each item in the dataset was associated
with two types of texts: a stimulus text and as item
text. Since these items were ELA items, stimulus
texts typically consisted of a reading passage de-
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signed to provide necessary information needed to
answer questions. Item texts contained the actual
question or prompt. To optimize input construction
for the modeling, we concatenated the item text
followed by the stimulus text. This ordering was to
ensure inclusion of the item prompt within limited
sequence length in the LLM modeling process. For
polytomously scored constructed-response items,
an additional piece of textual information was in-
corporated: rubric texts. The rubric texts were
needed to provide unique information to model
multiple difficulty parameters for the polytomous
items. To ensure this critical information was re-
tained in the modeling, rubric texts were prepended
to the item text, followed by the stimulus text.1

In addition to textual data, this study extracted a
set of item attribute variables to evaluate their con-
tribution to the prediction. In total, 152 attribute
variables were compiled: 59 content-based spec-
ification variables and 93 hand-crafted linguistic
features extracted from both item and stimulus texts
based on Baldwin et al. (2021) (see Appendix C
for examples of item attribute variables used in this
study.)

Target Variable: Banked IRT parameters.
The target variables in this study were IRT
parameters—both item difficulty and discrimina-
tion parameters—from the operational Smarter Bal-
anced item bank. In the bank, the dichotomous
items were calibrated using two-parameter logistic
(2PL) model (Birnbaum, 1968), while the poly-
tomous items were calibrated using generalized
partial credit model (GPCM) (Muraki, 1992).

3.2 Item Response Theory Model:
Generalized Partial Credit Model

Because the 2PL model is a special case of GPCM,
this study treated the 2PL-calibrated parameters as
a simplified instance of GPCM. GPCM describes
the probability of an examinee with a latent trait
level θ to obtain a score of v ∈ {0, 1, . . . ,mi} for
item i as:

piv =
exp(

∑v
r=0Dai(θ − bi + dir))∑mi

c=0 exp(
∑c

r=0Dai(θ − bi + dir))
,

where ai and bi respectively denote the overall dis-
crimination and difficulty parameters for item i,
and dir represents the step parameter for the cate-
gory r for the item. The GPCM parameters used

1Although the text input consists of rubric, item and stim-
ulus texts, we refer to this combined input as "item text" for
brevity throughout the remainder of this paper.

in this study were estimated under the constraints
di0 = 0 and

∑
r dir = 0. For the difficulty mod-

eling, the target variable was defined as the item
category threshold bi−dir for polytomously scored
items, where dir = 0 for the dichotomous cases.2

The discrimination parameter ai was used as the
target variable for modeling item discrimination.

3.3 Sampling
This study adopted an 80%:10%:10% split ap-
proach to create training, development, and test
sets, respectively. The training set was used to
train the models, while the development set was
used to guide hyperparameter tuning and modeling
decisions. The test set was held out to ensure the
generalized performance of the trained models. For
the sampling, items were stratified by item types to
equally distribute all item types across the sets. A
detailed breakdown of item type counts across the
three sets is provided in Appendix D.

3.4 Fine-tuning LLMs Using Texts as Primary
Input

To evaluate how item texts can be fine-tuned for
predicting IRT parameters, we implemented two
distinct LLM architectures as shown in Appendix E:
a baseline model that uses only item texts as in-
put, and an experimental model that incorporates
both item texts and attributes as input. In both
architectures, the model started by encoding item
text into static token-level embeddings of 768 di-
mensions using a pre-trained LLM. These token
embeddings were then aggregated to a single 768-
dimensional vector using mean pooling. Subse-
quently, the pooled vector was passed through three
consecutive hidden layers, with each normalized
by batch normalization, followed by Leaky ReLU
activations (Maas et al., 2013). Finally, a regres-
sion head was attached to the last hidden layer to
produce a continuous output for the target IRT pa-
rameters.

Model with Item Attributes. As shown on the
right side of Figure 1, the experimental model with
item attributes was implemented by concatenating
item attribute variables with the pooled embeddings
before passing it through the hidden layers. This
design allowed the model to leverage both item
text and attributes seamlessly within the fine-tuning
process.

2These category threshold parameters are referred to as
difficulty parameters throughout the remainder of this paper
for simplicity.
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Within this architecture, we explored two model
variants: one that uses the raw item attribute vari-
ables directly for the concatenation and the other
that concatenates predicted values from another
predictive ML model based on item attributes. We
refer to the first variant as the feature augmented
model, where the raw variables are used to aug-
ment the LLM feature space. The other variant
is referred to as the transfer learning model, as it
transfers predictive outputs from a separate model
into the LLM. Note that the inclusion of two ad-
ditional model variants resulted in a total of three
fine-tuned LLM approaches: (i) baseline models
using item texts as the sole input, (ii) feature aug-
mented models using raw item attributes alongside
the texts, and (iii) transfer learning models that
used LLM-predicted values as an additional input.

Selected Pre-trained LLMs. Four different
LLMs were experimented in this study to evalu-
ate differences in performance: RoBERTa (Liu
et al., 2019), DeBERTa (He et al., 2020), XL-
Net (Yang et al., 2019), and Longformer (Beltagy
et al., 2020). Three models except for XLNet were
encoder-based model. These encoder models were
chosen as they are designed to transform texts into
contextualized embeddings, which can be seam-
lessly adjusted for regression tasks. XLNet, while
not an encoder-only model, was chosen as it often
outperformed other transformer-based models due
to its recurrent mechanism that can accommodate
long-term dependencies (Ormerod et al., 2023).

Hyperparmeters. The following hyperparame-
ter settings were used throughout this study:

• Batch size: 16 for most models; reduced to 8 for De-
BERTa due to GPU memory limitations

• Number of epochs: 40 for most models; increased
to 100 for DeBERTa to ensure sufficient updates to
mitigate noisier gradients due to the smaller batch size 3

• Sequence length: 512 4

• Learning rate: 1e−5 for pre-trained LLM parameters
and 1e−2 for other model parameters

3.5 Traditional ML Approach Using Item
Attributes as Primary Input: CatBoost

In addition to fine-tuned LLMs, this study imple-
mented a traditional ML approach to predict IRT

3The study used the model state after completing all train-
ing epochs as the final model.

4While Longformer and XLNet can process inputs longer
than 512 tokens, the sequence length was fixed at 512 based
on preliminary analysis showing no performance advantage
from longer inputs.

parameters using item attribute variables as pri-
mary input. Specifically, CatBoost (Dorogush et al.,
2018)—a gradient boosting algorithm based on de-
cision trees—was chosen due to its ability to na-
tively handle categorical variables without requir-
ing dummy coding 5. Following the structure used
in the LLM-based modeling, three variants of the
CatBoost approach were developed: (i) baseline
models, (ii) feature augmented models, and (iii)
transfer learning models.

In the baseline model, only the item attribute
variables were used as input features. For the fea-
ture augmented model, embeddings extracted from
each of the fine-tuned baseline LLMs were ap-
pended to the item attribute feature set. In the trans-
fer learning model, the predicted values generated
by the fine-tuned baseline LLMs were appended
to the item attribute feature set as an additional
predictor.

4 Results

The predictive performance of the models was
evaluated using two metrics: Pearson correlation
(COR) and root mean squared error (RMSE). These
metrics were calculated by treating the banked IRT
parameters as the ground truth for the development
and test sets. Table 1 displays descriptive statistics
of the banked IRT parameters across the subsets.

Parameter Statistic Train Dev Test

Discrimination
(ai)

Min 0.110 0.166 0.203
1st Qu. 0.448 0.437 0.466
Median 0.579 0.548 0.633
Mean 0.586 0.553 0.610
3rd Qu. 0.718 0.681 0.743
Max 1.354 1.043 1.075
SD 0.199 0.179 0.209

Difficulty
(bi − dir)

Min -2.719 -1.770 -1.631
1st Qu. -0.175 -0.024 -0.086
Median 0.798 0.863 0.648
Mean 0.891 0.978 0.805
3rd Qu. 1.766 1.770 1.681
Max 9.068 6.251 4.607
SD 1.379 1.391 1.257

Table 1: Summary statistics for the banked IRT parame-
ters across the sets.

The prediction results presented in the following
are all based on the held-out test set.

5The study used CatBoost v1.2.7 with default hyperparam-
eter settings.

253



4.1 Item Difficulty Prediction Results

Table 2 presents the performance of fine-tuned
LLM and CatBoost models on the item difficulty
prediction task.

Positive Impact of Item Attribute Integration
in LLM Fine-Tuning. The results demonstrate
promising prediction accuracy for baseline fine-
tuned LLMs, achieving correlations close to 0.7
with Longformer and DeBERTa. These findings
suggest that item text alone can contribute substan-
tial information relevant to predicting difficulty pa-
rameters when leveraged through LLM fine-tuning.
Further improvements were observed with the fea-
ture augmented models, where raw item attribute
variables were integrated into the LLM fine-tuning.
This method consistently (albeit marginally) out-
performed the baseline across all four LLMs, yield-
ing the highest correlations and lowest RMSEs in
most of LLMs.6 These results indicate that item at-
tributes can provide additional information in pred-
iting difficulty parameters. In contrast, the transfer
Learning LLM models—where predicted values
from CatBoost model were appended to inputs—
suffered reduced performance. This indicates that
incorporating predicted values from an external
model may have simply added additional noise
rather than signal, particularly when the predic-
tions themselves were only moderately accurate
(e.g., a correlation of 0.492 in this case).

Improved CatBoost Performance via LLM-
Based Augmentation. The CatBoost Baseline
model, which used only item attribute variables
for predicting item difficulty, showed limited pre-
dictive power, with a correlation less than 0.5.
However, its performance improved substantially
when augmented with embeddings from fine-tuned
LLMs, regardless of the LLM type. For example,
augmenting item attributes with fine-tuned embed-
dings increased the correlation from .492 to .706
in the case of Longformer. A similar positive ef-
fect was observed with transfer learning model;
when predicted values from fine-tuned LLMs were
added as additional inputs, performance markedly
improved over baseline.

While both the feature augmented and transfer
learning CatBoost models showed notable gains,
their performance remained short of the best re-
sults achieved by the fine-tuned LLMs—those aug-

6The magnitude of improvement was more pronounced in
the development set results; see Appendix F.

mented with raw item attribute variables.

4.2 Item Discrimination Prediction Results

Table 3 presents the item discrimination prediction
performance of fine-tuned LLM and CatBoost mod-
els. The discrimination prediction results showed
distinctively different patterns from the difficulty
prediction.

Strong Performance of CatBoost for Discrim-
ination Prediction. In contrast to the pattern ob-
served in difficulty prediction, the baseline Cat-
Boost model yielded the strongest performance for
discrimination prediction among all conditions. As
shown in Table 3, this baseline model, which used
only item attribute variables, achieved the highest
correlation (0.537) and the lowest RMSE (0.174),
consistently outperforming all other model vari-
ants.

In comparison, the baseline fine-tuned LLM
models performed notably worse than they had
in the difficulty prediction task. When fine-tuned
solely on item text, the LLMs produced correla-
tion values as low as 0.310. Likely due to this low
baseline performance, augmenting CatBoost with
fine-tuned embeddings or LLM-based predictions
resulted in noticeable drops in prediction accuracy.
For instance, with RoBERTa, the addition of fine-
tuned embeddings reduced the correlation from
0.537 (CatBoost baseline) to 0.396. This degra-
dation further highlights the limited capacity of
fine-tuned LLMs for modeling item discrimination.

Conversely, the contribution of item attribute
variables to the fine-tuned LLMs was notable, lead-
ing to consistent performance gains. For example,
Longformer’s correlation improved from 0.337 in
the baseline LLM to 0.425 with the addition of
raw item attributes, and further increased to 0.477
when predictions from the CatBoost model were
appended. This trend was consistent across all
LLMs: the transfer learning fine-tuned LLM mod-
els always outperformed the baseline LLMs, often
by substantial margins.

5 Discussion

In this study, we presented novel approaches for
fine-tuning LLMs using item text to predict IRT
parameters. Beyond the baseline model that re-
lied solely on item text, we introduced structured
methods for incorporating item attribute variables
into the fine-tuning process to further enhance pre-
dictive performance. We also examined the use
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Approach Variant Correlation RMSE

RoBERTa DeBERTa XLNet
Long

former RoBERTa DeBERTa XLNet
Long

former

Fine-tuned
LLM

Baseline 0.633 0.691 0.686 0.691 1.029 0.910 0.964 0.967
F.A. 0.707 0.712 0.699 0.717 0.890 0.889 0.908 0.966
T.L. 0.563 0.644 0.547 0.609 1.070 0.980 1.095 1.069

CatBoost
Baseline 0.492 0.492 0.492 0.492 1.133 1.133 1.133 1.133
F.A. 0.669 0.686 0.559 0.706 0.965 0.936 1.054 0.907
T.L. 0.646 0.678 0.688 0.696 0.997 0.936 0.919 0.913

Table 2: Item difficulty prediction results on the test set using fine-tuned LLM and CatBoost models across
three model variants. Within each LLM, bold marks the best performance and underline marks the second best.
F.A.=Feature Augmented; T.L.=Transfer Learning. Corresponding results to the development set can be found in
Appendix F.

Approach Variant Correlation RMSE

RoBERTa DeBERTa XLNet
Long

former RoBERTa DeBERTa XLNet
Long

former

Fine-tuned
LLM

Baseline 0.394 0.310 0.334 0.337 0.196 0.205 0.218 0.200
F.A. 0.348 0.320 0.324 0.425 0.203 0.201 0.208 0.196
T.L. 0.465 0.495 0.470 0.477 0.186 0.195 0.276 0.183

CatBoost
Baseline 0.537 0.537 0.537 0.537 0.174 0.174 0.174 0.174
F.A. 0.396 0.428 0.426 0.409 0.196 0.192 0.190 0.197
T.L. 0.414 0.352 0.376 0.335 0.194 0.200 0.200 0.202

Table 3: Item discrimination prediction results on the test set using fine-tuned LLM and CatBoost models across
three modeling variants. Within each LLM, bold marks the best performance and underline marks the second best.
F.A. = Feature Augmented; T.L. = Transfer Learning. Corresponding results to the development set can be found in
Appendix G.

.

of a traditional ML algorithm—CatBoost—using
item attribute variables as primary inputs, and fur-
ther investigated whether combining CatBoost with
information derived from fine-tuned LLMs could
improve prediction accuracy.

Performance of the suggested methods was eval-
uated using a large dataset of Grade 6 ELA as-
sessment items. The dataset included a mix of
dichotomously and polytomously scored items, of-
fering a valuable opportunity to assess model per-
formance on predicting multiple difficulty param-
eters in polytomous items. In addition, we also
fully investigated the prediction performance of the
item discrimination parameters, which has received
limited attention in prior IRT parameter modeling
research.

Our results suggested that predicting item diffi-
culty parameters was a relatively more amenable
modeling task, with several models achieving mod-
erately high correlations. In contrast, predicting
item discrimination parameters were found to be
more challenging, consistently yielding lower per-
formance. In particular, we found that the fine-

tuned LLMs performed well in the difficulty pre-
diction, but were susbtantially less effective for
discrimination. This disparity indicates that item
texts contain meaningful signals for modeling dif-
ficulty, but offer limited information in capturing
item discrimination.

Interestingly, the traditional CatBoost model us-
ing only item attribute variables showed relatively
strong performance in predicting discrimination pa-
rameters, achieving highest correlations and lowest
RMSEs. This finding highlights the potential value
of using structured item attribute features in model-
ing discrimination parameters and may offer useful
direction to researchers and practitioners.

The study also explored the integration of two in-
formation sources—item text and item attributes—
as inputs into the prediction models. This strategy
showed mixed results. When the added informa-
tion came from a strong predictive source, such
as fine-tuned LLM derived values in the difficulty
modeling, it considerably enhanced model perfor-
mance. However, when the appended information
had limited predictive quality, it often introduced
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noise and reduced accuracies. These findings high-
light both the promise and the risks of multi-source
modeling: while combining signals can enhance
prediction, it is crucial to assess the individual con-
tribution of each source before integration.

Limitations

This study is not without limitations. First, al-
though we partitioned the dataset into training, de-
velopment, and test sets, we did not employ full
cross-validation during hyperparameter tuning. As
a result, model performance may have been some-
what sensitive to the specific data split that we
used. Second, all hyperparameter settings were
optimized based on the development set perfor-
mance for the difficulty prediction task. These
settings were then applied to the discrimination
prediction without futher tuning. Given the distinct
nature of the prediction targets, task-specific hyper-
parameter optimization—particularly for discrim-
ination modeling using fine-tuned LLMs—could
have yielded improved performance. Third, while
several models achieved strong correlations for dif-
ficulty prediction, the overall predictive accuracy
indicates considerable potential for future improve-
ment. This reflects the inherent complexity of this
task and highlights the need for continued research.

Future Work

In an effort to improve the alignment of predicted
values with the true parameters, the authors con-
ducted preliminary investigation of a sequential ap-
proach that incorporates predicted values as infor-
mative priors within a Bayesian estimation frame-
work with small samples, as explored in Ulitzsch
et al. (2025). Initial results suggest that incorpo-
rating a small response sample—as small as 50
examinees—can significantly improve estimation
accuracy. However, a detailed discussion of this
extension lies beyond the scope of the current study
and will be addressed in future work. In addition,
future research will explore the differential perfor-
mance of the predictions across item types as a
larger and more diverse sample of items becomes
available. Such analysis is expected to provide
practical insights for practitioners by illuminating
conditions where fine-tuned LLMs are most effec-
tive in predicting IRT parameters.
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A Descriptions of Item Types

Abbreviation Item Type Description

EBSR Evidence-Based Selected Response This item type has two parts: Part A asks ex-
aminees to select a correct response from four
options, and Part B asks them to identify tex-
tual support for their answer

HT Hot Text This item type asks examinees to either select
a correct word or rearrange words/phrases by
clicking and dragging

MC Multiple Choice This item type asks examinees to choose one
answer from multiple options

MI Match Interaction This item type requires examinees to match
text or images in rows to values in columns by
clicking cells

MS Multi Select This item type asks examinees to select one or
more options

SA Short Answer This item type asks examinees to enter a re-
sponse using alphanumeric characters via a
keyboard

WER Writing Extended Response This item type asks examinees to provide a
longer written response using keyboard entry
of alphanumeric characters

Table 4: Descriptions of the item types used in this study
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B Item Counts by Year and Type

Year EBSR HT MC MI MS SA WER Total

2014 23 75 174 1 119 42 6 440
2015 20 79 127 1 85 31 343
2016 1 7 4 12
2017 1 2 8 3 2 3 19
2018 2 6 9 5 3 19 4 48
2019 11 24 84 4 14 1 2 140
2020 5 5
2022 3 16 55 4 11 21 2 112

Total 60 203 464 15 239 116 22 1119

Table 5: Item counts by field test year and item type
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C Examples of Item Attribute Variables

Attribute Type Variable
Type

Label Description

Content Spec Categorical itemType Item types
Content Spec Categorical WERdimension Dimension of WER items
Content Spec Categorical claim Four main claims in Smarter Balanced ELA
Content Spec Categorical lowestLevel Content standards for ELA
Content Spec Categorical stimGenre Genre of stimulus
Content Spec Numeric IAT.Tables Number of tables embedded in the item
Content Spec Numeric IAT.Images Number of images embedded in the item
Content Spec Numeric choiceInt Number of choice-type interactions in the

item
Content Spec Numeric hotTextInt Number of hot-text-type interactions in the

item
Content Spec Numeric FleschEase The Flesch Reading readability level mea-

suring easiness of text
Content Spec Numeric FleschKinc The Flesch Kincaid Readability level mea-

suring US grade level required to under-
stand text

Linguistic Numeric numWords Number of words in the text
Linguistic Numeric numContWords Number of content words in the text
Linguistic Numeric numPolySem Number of words that have multiple mean-

ings
Linguistic Numeric numWSenseNoun Number of word senses for nouns
Linguistic Numeric avgSynTreeDep Average depth of syntax trees in sentences
Linguistic Numeric notCommon2000 Number of words that are not in common

2000 words in Reuter corpus
Linguistic Numeric avgImage Average rating of words based on how eas-

ily and quickly a mental image can be
evoked, according to the MRC Psycholin-
guistic Database

Table 6: Example of item attribute features. Content Spec=Content-based specification features; Linguistic=Hand-
crafted linguistic features
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D Distribution of Item Types Across Subsets

Item Type Training Development Test Total

EBSR 48 6 6 60
HT 162 20 21 203
MC 371 46 47 464
MI 12 1 2 15
MS 191 24 24 239
SA 92 12 12 116
WER 17 2 3 22

Total 893 111 115 1119

Table 7: Counts of Item Types by Subset.

261



E Fine-tuned LLM Model Architecture

Figure 1: Fine-tuned LLM Model Architecture
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F Item Difficulty Prediction Results on the Development Set

Approach Variant Correlation RMSE

RoBERTa DeBERTa XLNet
Long

former RoBERTa DeBERTa XLNet
Long

former

Fine-tuned
LLM

Baseline 0.742 0.732 0.713 0.744 0.930 0.961 1.065 0.931
F.A. 0.762 0.777 0.777 0.785 0.932 0.886 0.884 0.882
T.L. 0.759 0.792 0.752 0.767 0.924 0.867 0.938 0.908

CatBoost
Baseline 0.692 0.692 0.692 0.692 1.008 1.008 1.008 1.008
F.A. 0.729 0.728 0.749 0.772 0.953 0.970 0.932 0.896
T.L. 0.754 0.742 0.741 0.751 0.915 0.944 0.952 0.927

Table 8: Item difficulty prediction results on the development set using fine-tuned LLM and CatBoost approaches
across three model variants. Within each LLM, bold marks the best and underline marks the second best performance.
F.A.=Feature Augmented; T.L.=Transfer Learning.
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G Item Discrimination Prediction Results on the Development Set

Approach Variant Correlation RMSE

RoBERTa DeBERTa XLNet
Long

former RoBERTa DeBERTa XLNet
Long

former

Fine-tuned
LLM

Baseline 0.258 0.216 0.190 0.188 0.187 0.192 0.204 0.250
F.A. 0.374 0.241 0.292 0.371 0.180 0.186 0.191 0.174
T.L. 0.406 0.339 0.368 0.386 0.183 0.175 0.316 0.178

CatBoost
Baseline 0.447 0.447 0.447 0.447 0.167 0.167 0.167 0.167
F.A. 0.272 0.235 0.296 0.294 0.186 0.194 0.190 0.185
T.L. 0.304 0.221 0.221 0.266 0.184 0.192 0.196 0.186

Table 9: Item discrimination prediction results on the development set using fine-tuned LLM and CatBoost
approaches across three model variants. Within each LLM, bold marks the best and underline marks the second
best performance. F.A.=Feature Augmented; T.L.=Transfer Learning.
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