@inproceedings{arieli-attali-etal-2025-assessing,
title = "Assessing {AI} skills: A washback point of view",
author = "Arieli-Attali, Meirav and
Beigman Klebanov, Beata and
O{'}Reilly, Tenaha and
Zapata-Rivera, Diego and
Sabag-Shushan, Tami and
Awadie, Iman",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.29/",
pages = "274--280",
ISBN = "979-8-218-84228-4",
abstract = "The emerging dominance of AI in the perception of skills-of-the-future makes assessing AI skills necessary to help guide learning. Creating an assessment of AI skills poses some new challenges. We examine those from the point of view of washback, and exemplify using two exploration studies conducted with 9th grade students."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arieli-attali-etal-2025-assessing">
<titleInfo>
<title>Assessing AI skills: A washback point of view</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meirav</namePart>
<namePart type="family">Arieli-Attali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tenaha</namePart>
<namePart type="family">O’Reilly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Zapata-Rivera</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tami</namePart>
<namePart type="family">Sabag-Shushan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iman</namePart>
<namePart type="family">Awadie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>The emerging dominance of AI in the perception of skills-of-the-future makes assessing AI skills necessary to help guide learning. Creating an assessment of AI skills poses some new challenges. We examine those from the point of view of washback, and exemplify using two exploration studies conducted with 9th grade students.</abstract>
<identifier type="citekey">arieli-attali-etal-2025-assessing</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.29/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>274</start>
<end>280</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing AI skills: A washback point of view
%A Arieli-Attali, Meirav
%A Beigman Klebanov, Beata
%A O’Reilly, Tenaha
%A Zapata-Rivera, Diego
%A Sabag-Shushan, Tami
%A Awadie, Iman
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F arieli-attali-etal-2025-assessing
%X The emerging dominance of AI in the perception of skills-of-the-future makes assessing AI skills necessary to help guide learning. Creating an assessment of AI skills poses some new challenges. We examine those from the point of view of washback, and exemplify using two exploration studies conducted with 9th grade students.
%U https://aclanthology.org/2025.aimecon-main.29/
%P 274-280
Markdown (Informal)
[Assessing AI skills: A washback point of view](https://aclanthology.org/2025.aimecon-main.29/) (Arieli-Attali et al., AIME-Con 2025)
ACL
- Meirav Arieli-Attali, Beata Beigman Klebanov, Tenaha O’Reilly, Diego Zapata-Rivera, Tami Sabag-Shushan, and Iman Awadie. 2025. Assessing AI skills: A washback point of view. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers, pages 274–280, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).