@inproceedings{lu-etal-2025-compare,
title = "Compare Several Supervised Machine Learning Methods in Detecting Aberrant Response Pattern",
author = "Lu, Yi and
Zhang, Yu and
Mueller, Lorin",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.3/",
pages = "21--24",
ISBN = "979-8-218-84228-4",
abstract = "An aberrant response pattern, e.g., a test taker is able to answer difficult questions correctly, but is unable to answer easy questions correctly, are first identified lz and lz*. We then compared the performance of five supervised machine learning methods in detecting aberrant response pattern identified by lz or lz*."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-etal-2025-compare">
<titleInfo>
<title>Compare Several Supervised Machine Learning Methods in Detecting Aberrant Response Pattern</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lorin</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>An aberrant response pattern, e.g., a test taker is able to answer difficult questions correctly, but is unable to answer easy questions correctly, are first identified lz and lz*. We then compared the performance of five supervised machine learning methods in detecting aberrant response pattern identified by lz or lz*.</abstract>
<identifier type="citekey">lu-etal-2025-compare</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.3/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>21</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Compare Several Supervised Machine Learning Methods in Detecting Aberrant Response Pattern
%A Lu, Yi
%A Zhang, Yu
%A Mueller, Lorin
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F lu-etal-2025-compare
%X An aberrant response pattern, e.g., a test taker is able to answer difficult questions correctly, but is unable to answer easy questions correctly, are first identified lz and lz*. We then compared the performance of five supervised machine learning methods in detecting aberrant response pattern identified by lz or lz*.
%U https://aclanthology.org/2025.aimecon-main.3/
%P 21-24
Markdown (Informal)
[Compare Several Supervised Machine Learning Methods in Detecting Aberrant Response Pattern](https://aclanthology.org/2025.aimecon-main.3/) (Lu et al., AIME-Con 2025)
ACL