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Abstract

An aberrant response pattern, e.g., a test taker is able
to answer difficult questions correctly, but is unable to
answer easy questions correctly, are first identified 1z
and 1z*. We then compared the performance of five
supervised machine learning methods in detecting
aberrant response pattern identified by 1z or 1z*.

1 Introduction

Investigating fraudulent testing behavior,
especially for high-stakes assessments, has been
a common practice for maintaining test score
validity. In practical assessment, one of the
important problems is to ensure that the test
taker’s response pattern is consistent with the
expected item score pattern. When the difference
between the observed and the expected pattern is
large, it is classified as an aberrant response
pattern (Magis, Raiche, & Beland, 2012; Meijer
& Tendeiro, 2014). One example is test taker is
able to answer difficult questions correctly, but is
unable to answer easy questions correctly. Lz
and its modification Lz*, two well-known
person-fit statistics are applied in the study to
detect aberrant response pattern specified above.

The rapid advancement of machine learning
(ML) techniques has led to their widespread
application across various domains. In recent
years, several studies have conducted
comprehensive comparisons of machine learning
models to understand their relative strengths and
limitations across diverse tasks (e.g., Caruana
and Niculescu-Mizil, 2006; Neagu et al., 2007;
Raschka, 2018). Collectively, these studies
provide a foundational basis for applying and
evaluating machine learning algorithms in the
present study, which focuses on detecting
aberrant response patterns using indices such as
the 1z and 1z* statistics. In the field of
educational science, several studies explored
machine learning to detect exam cheating (e.g.,

Man et al., 2019; Pan et al., 2022; Zopluoglu,
2019). There are relatively few studies
implementing machine learning methods to
investigate aberrant response pattern as specified
in the current study.

2 Data

Data used for this study was selected from a
licensure exam that is administered multiple
times each year. We selected one test form that
was administered twice in one year for this
study. We used item responses from 2561
examinees who took this form in April as
training data. We used item responses from 492
examinees who took the same form in October as
test data. There were 200 scored items in this
form. Item response for these 200 items was
taken as input features. The target variable for
each examinee is either flagged as an aberrant
response pattern or not based on Iz or 1z* person
fit statistics. In literature, the cutoff value of -4 is
used to flag examinees of aberrant response
patterns (Tendeiro, Meijer, & Niessen, 2016). In
our operational analysis, we used the criteria
listed in Table 1 on page 7 to flag aberrant
response pattern. Using flagging criteria in Table
1, “flagged #” column in Table 2 on page 7 lists
the number of flagged cases in training and test
data based on 1z and 1z* indices, respectively.
For our data, the examinees with aberrant
response pattern are the minority. A much
smaller number of positive cases (aberrant
response pattern examinees) can lead to bias in
model prediction. To handle the issue of data
imbalance, we then conducted data simulation.
That is, based on the response pattern of the
flagged cases, we simulated one time and two
times of examinees that have very similar
responses as the flagged aberrant response
pattern. The last two columns in Table 2 present
the simulated number of aberrant response
pattern. Those simulated cases were then
randomly inserted and replaced normal response
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pattern in the original data. In this way, the total
number of examinees in training and test data
remain the same.

3 Methods

3.1 Lz and Lz* Person-fit Statistics

Drasgow, Levine, & Williams (1985) proposed a
standardized version of 1z

IZZIO_E(IO) (1)
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Where [, is the log likelihood function of any
response pattern, E(/;) and V'(/,) are the mean
and variance of /;

Snijder (2001), proposed 1z*, in which true
ability estimates were replaced by sample ability
estimates. Magis et al (2012) illustrated 1z* as

_ Wn(0)—c,(0)*r,(0)
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where Wn(0)is a statistic, 7,(6)is an estimator,
¢,(0)is a function modifying 7,(0), V[,(0)]
is the modified variance. Magis et al. (2012) has
detailed illustrations of those statistics. From
equations 1 and 2, we can say that Iz* index is a
rescaled version of 1z by adjusting both its mean
and its variance. Lz and 1z* are implemented in
the current study to identify aberrant response
patterns, as illustrated in the data section.

Iz* (2)

3.2

Machine learning is broadly categorized into four
main types: supervised learning, unsupervised
learning, semi-supervised learning, and
reinforcement learning. As stated below, five
supervised learning methods are implemented in
the current study to flag aberrant response
pattern identified by 1z or 1z*.

K-Nearest Neighbor (KNN): KNN is a learning
algorithm that attempts to classify new samples
by allocating them to the class of the most
similar labeled cases. In this study, the KNN
algorithm was employed to classify examinee
response vectors flagged by the 1z or 1z* indices
as either aberrant or normal. The algorithm does
not make assumptions about the underlying data
distribution, making it particularly suitable for
exploratory and diagnostic contexts. The
simplicity and interpretability of KNN provide a
valuable benchmark against which more
complex models—such as neural networks or
Support Vector Machines—can be compared.

Supervised Machine Learning Methods

22

Naive Bayes: The Naive Bayes classifier is a
probabilistic machine learning model based on
Bayes’ Theorem. Bayes’ Theorem is formally
expressed as:

_ P(x|Cr)*P(Ck)
P(Celx) = =5 3)
Under the naive conditional independence
assumption, the joint likelihood simplifies to a
product of individual feature likelihoods:

P(Cilxqy, x5, %) * P(C) [Ti=1 P (xi]Cy)
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The classification rule then becomes:
y=argmax P(C)Ilz; P(xlC) (5)

ke{1,k}
Based on equation above, Naive Baye
classification algorithm can be used for
categorizing new observation into predefined
classes for the initiated data. In this study, the
Gaussian Naive Bayes variant was applied to
detect aberrant response pattern identified by the
1z or 1z* indices. The model was implemented
using the GaussianNB class from the
sklearn.naive bayes module in Python.

Logistic regression: Logistic regression models
the probability that a given input belongs to a
specific class. It does this by applying the
sigmoid (logistic) function to a linear
combination of the input features (Hosmer,
Lemeshow, & Sturdivant, 2013).

The sigmoid function is defined as:

S@) =—— (6)
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In the context of logistic regression, the input to
the sigmoid function is a linear combination of
the predictor variables:

: (7
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Where p is the estimated probability that the
instance belongs to class 1 (e.g., exhibiting
aberrant response pattern), m represents the
weight coefficients (slopes), X is the feature
vector (e.g., item responses), and b is the
intercept (bias).

Logistic regression learns these parameters
during model training by maximizing the
likelihood of the observed data. In binary
classification, a threshold (typically 0.5) is
applied to the predicted probability to assign
class labels. The model was implementedusing
the LogisticRegression class from the
sklearn.linear model module in Python.



Support Vector Machine (SVM): The central
idea behind SVM is to find the optimal
hyperplane that best separates data points from
different classes in a high-dimensional space. For
binary classification, as in the current study, the
goal is to maximize the margin between the two
classes—the distance between the hyperplane
and the nearest data points from each class,
known as support vectors.

In this study, a Support Vector Machine (SVM)
classifier was employed to detect examinees with
aberrant response patterns, as flagged by the 1z or
1z* indices. The SVM model was implemented
using the SVC class from the scikit-learn library
in Python. The default SVM configuration with a
radial basis function (RBF) kernel was used,
which allows the model to capture non-linear
relationships in the data.

Neural networks (NNs): NNs are a class of
machine learning models inspired by the
structure and function of the human brain. They
consist of layers of interconnected processing
nodes (neurons), where each neuron applies a
transformation to the input and passes the result
to subsequent layers. Each connection between
neurons is associated with a weight that is
learned during training through optimization
algorithms such as stochastic gradient descent
and backpropagation. To classify examinees
based on aberrant response pattern identified by
the Iz or 1z* indices, a feedforward neural
network was implemented using TensorFlow and
Keras.

In the current study, the architecture of the neural
network included the following items:

e An input layer with 200 features
(corresponding to the number of items),

e Two hidden layers with ReLU activation
functions,

e Dropout layers for regularization to
mitigate overfitting, and

e A final output layer with a sigmoid
activation function for binary
classification.

4. Software for Estimation

In this experimental stage, we used Google
Colab for estimation. Oversample method was
applied in Colab to make sure all aberrant
response patterns have been sampled when
training the model.
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5. Results

One essential tool to evaluate the performance of
machine learning models is confusion matrix. A
confusion matrix is a simple table that shows
how well a classification model is performed by
comparing its predictions to the actual results. A
confusion matrix adapted to the context of the
current study is presented in Table 3 on page 7.
Below is a brief explanation on evaluation
metrics that applied in the study to evaluate the
performance of these supervised machine
learning mothods.

.. T
Precision=
TP+FP

Precision focuses on the accuracy of the model’s
positive predictions. It tells us how many of the
instances predicted as positive are actually
positive.

TP
TP+FN

Recall/Sensitivity =

Recall measures the proportion of correctly
predicted positive instances among all actual
positive instances.

Precison * Sensitivity

Flscore=2 * — —
Precision + Sensitivity

F1 score combines precision and recall into a
single metric to balance their trade-off. It
provides a better sense of a model’s overall
performance, particularly for imbalanced
datasets. F1 score ranges from O to 1, with 1
indicating the best possible performance.

Accuracy= TP+TN
Y TP+TN+FN+FP

Accuracy measures how often the model’s
predictions are correct overall. It gives a general
idea of how well the model is performing.

In the current study, under different conditions
on the number of aberrant response pattern, the
resulting classification performance was
compared among five supervised machine
learning models. Tables 4 and 5 on pages 8 and 9
summarize the classification performance of five
machine learning models in detecting aberrant
response patterns as identified by the Lz and 1z*
index, respectively.

Results in these two tables show that, under the
condition of the real number of flagged cases,
most models—particularly KNN and SVM—
struggled to detect aberrant responses, often
yielding near-zero F1-scores. Logistic regression
consistently achieved high precision but suffered
from low recall, while Naive Bayes and neural
networks offered more balanced but modest
performance. These results underscore the
effectiveness of simulation-based data



augmentation for enhancing model sensitivity
and suggest that sample size and class balance
are critical factors in building reliable aberrant
response detectors.

6. Conclusion

In this study, we implemented five supervised
machine learning models in detecting aberrant
response pattern identified by 1z and 1z* indices.
Across both the Lz and Lz* indices, machine
learning models demonstrated consistently high
accuracy in identifying normal response patterns.
However, performance in detecting aberrant
response patterns varied considerably and was
highly sensitive to class imbalance. As the
number of aberrant responses increased through
simulation (1x and 2x the original cases), all
models showed marked improvement in
identifying aberrant patterns, with F1-scores for
class 1 increasing by 2—3 times or more.

In our research, the primary goal of this study
has been to compare and choose the best
machine learning models. Based on the
evaluation metrics—including precision, recall,
and F1 score—logistic regression and neural
network models demonstrated the strongest
performance in detecting aberrant response
patterns (in the condition of a real number of
aberrant response pattern). However, it is
important to note that training the neural network
required substantially longer computation time
compared to logistic regression. While both
models show promise, their effectiveness should
be further validated using independent datasets to
ensure generalizability. Future research may also
explore the potential of alternative machine
learning models to enhance detection accuracy
and efficiency in various operational contexts.
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