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Abstract 

An aberrant response pattern, e.g., a test taker is able 

to answer difficult questions correctly, but is unable to 

answer easy questions correctly, are first identified lz 

and lz*. We then compared the performance of five 

supervised machine learning methods in detecting 

aberrant response pattern identified by lz or lz*. 

1 Introduction 

Investigating fraudulent testing behavior, 
especially for high-stakes assessments, has been 
a common practice for maintaining test score 
validity. In practical assessment, one of the 
important problems is to ensure that the test 
taker’s response pattern is consistent with the 
expected item score pattern. When the difference 
between the observed and the expected pattern is 
large, it is classified as an aberrant response 
pattern (Magis, Raiche, & Beland, 2012; Meijer 
& Tendeiro, 2014). One example is test taker is 
able to answer difficult questions correctly, but is 
unable to answer easy questions correctly. Lz 
and its modification Lz*, two well-known 
person-fit statistics are applied in the study to 
detect aberrant response pattern specified above.  

The rapid advancement of machine learning 
(ML) techniques has led to their widespread 
application across various domains. In recent 
years, several studies have conducted 
comprehensive comparisons of machine learning 
models to understand their relative strengths and 
limitations across diverse tasks (e.g., Caruana 
and Niculescu-Mizil, 2006; Neagu et al., 2007;  
Raschka, 2018). Collectively, these studies 
provide a foundational basis for applying and 
evaluating machine learning algorithms in the 
present study, which focuses on detecting 
aberrant response patterns using indices such as 
the lz and lz* statistics. In the field of 
educational science, several studies explored 
machine learning to detect exam cheating (e.g., 

Man et al., 2019; Pan et al., 2022; Zopluoglu, 
2019). There are relatively few studies 
implementing machine learning methods to 
investigate aberrant response pattern as specified 
in the current study. 

2 Data 

Data used for this study was selected from a 
licensure exam that is administered multiple 
times each year. We selected one test form that 
was administered twice in one year for this 
study. We used item responses from 2561 
examinees who took this form in April as 
training data. We used item responses from 492 
examinees who took the same form in October as 
test data. There were 200 scored items in this 
form. Item response for these 200 items was 
taken as input features. The target variable for 
each examinee is either flagged as an aberrant 
response pattern or not based on lz or lz* person 
fit statistics. In literature, the cutoff value of -4 is 
used to flag examinees of aberrant response 
patterns (Tendeiro, Meijer, & Niessen, 2016). In 
our operational analysis, we used the criteria 
listed in Table 1 on page 7 to flag aberrant 
response pattern. Using flagging criteria in Table 
1, “flagged #” column in Table 2 on page 7 lists 
the number of flagged cases in training and test 
data based on lz and lz* indices, respectively. 
For our data, the examinees with aberrant 
response pattern are the minority. A much 
smaller number of positive cases (aberrant 
response pattern examinees) can lead to bias in 
model prediction. To handle the issue of data 
imbalance, we then conducted data simulation. 
That is, based on the response pattern of the 
flagged cases, we simulated one time and two 
times of examinees that have very similar 
responses as the flagged aberrant response 
pattern. The last two columns in Table 2 present 
the simulated number of aberrant response 
pattern. Those simulated cases were then 
randomly inserted and replaced normal response 
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pattern in the original data. In this way, the total 
number of examinees in training and test data 
remain the same.  

3 Methods 

3.1 Lz and Lz* Person-fit Statistics 

Drasgow, Levine, & Williams (1985) proposed a 
standardized version of lz 
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Where 
0l is the log likelihood function of any 

response pattern, 
0( )E l  and 

0( )V l are the mean 
and variance of 

0l  

Snijder (2001), proposed lz*, in which true 
ability estimates were replaced by sample ability 
estimates.  Magis et al (2012) illustrated lz* as  

                                          
(2) 

where ( )Wn  is a statistic, 
0 ( )r  is an estimator, 

( )nc  is a function modifying  
0 ( )r  , 

0[ ( )]V l   
is the modified variance. Magis et al. (2012) has 
detailed illustrations of those statistics. From 
equations 1 and 2, we can say that lz* index is a 
rescaled version of lz by adjusting both its mean 
and its variance. Lz and lz* are implemented in 
the current study to identify aberrant response 
patterns, as illustrated in the data section. 

. 

3.2 Supervised Machine Learning Methods 

Machine learning is broadly categorized into four 
main types: supervised learning, unsupervised 
learning, semi-supervised learning, and 
reinforcement learning. As stated below, five 
supervised learning methods are implemented in 
the current study to flag aberrant response 
pattern identified by lz or lz*.  

K-Nearest Neighbor (KNN): KNN is a learning 
algorithm that attempts to classify new samples 
by allocating them to the class of the most 
similar labeled cases. In this study, the KNN 
algorithm was employed to classify examinee 
response vectors flagged by the lz or lz* indices 
as either aberrant or normal. The algorithm does 
not make assumptions about the underlying data 
distribution, making it particularly suitable for 
exploratory and diagnostic contexts.  The 
simplicity and interpretability of KNN provide a 
valuable benchmark against which more 
complex models—such as neural networks or 
Support Vector Machines—can be compared. 

Naïve Bayes: The Naïve Bayes classifier is a 
probabilistic machine learning model based on 
Bayes’ Theorem. Bayes’ Theorem is formally 
expressed as: 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝑥|𝐶𝑘)∗𝑃(𝐶𝑘)

𝑃(𝑥)
               (3)                                

Under the naïve conditional independence 
assumption, the joint likelihood simplifies to a 
product of individual feature likelihoods:  

𝑃(𝐶𝑘|𝑥1, 𝑥2, . . . 𝑥𝑛) ∝ 𝑃(𝐶𝑘) ∏𝑛
𝑖=1 𝑃(𝑥𝑖|𝐶𝑘) 

(4) 

The classification rule then becomes: 

𝑦̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥 
𝑘∈{1,𝑘}

𝑃(𝐶𝑘) ∏𝑛
𝑖=1 𝑃(𝑥𝑖|𝐶𝑘)     (5)                   

Based on equation above, Naïve Baye 
classification algorithm can be used for 
categorizing new observation into predefined 
classes for the initiated data. In this study, the 
Gaussian Naïve Bayes variant was applied to 
detect aberrant response pattern identified by the 
lz or lz* indices. The model was implemented 
using the GaussianNB class from the 
sklearn.naive_bayes module in Python. 

Logistic regression: Logistic regression models 
the probability that a given input belongs to a 
specific class. It does this by applying the 
sigmoid (logistic) function to a linear 
combination of the input features (Hosmer, 
Lemeshow, & Sturdivant, 2013). 

The sigmoid function is defined as: 

𝑆(𝑦) =
1

1+𝑒−𝑦    (6)                                                                

In the context of logistic regression, the input to 
the sigmoid function is a linear combination of 
the predictor variables: 

𝑝 =
1

1+𝑒−(𝑚𝑥+𝑏)     (7)                                                                  

Where p is the estimated probability that the 
instance belongs to class 1 (e.g., exhibiting 
aberrant response pattern), m represents the 
weight coefficients (slopes), X is the feature 
vector (e.g., item responses), and b is the 
intercept (bias). 

Logistic regression learns these parameters 
during model training by maximizing the 
likelihood of the observed data. In binary 
classification, a threshold (typically 0.5) is 
applied to the predicted probability to assign 
class labels. The model was implementedusing 
the LogisticRegression class from the 
sklearn.linear model module in Python.  
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Support Vector Machine (SVM): The central 
idea behind SVM is to find the optimal 
hyperplane that best separates data points from 
different classes in a high-dimensional space. For 
binary classification, as in the current study, the 
goal is to maximize the margin between the two 
classes—the distance between the hyperplane 
and the nearest data points from each class, 
known as support vectors. 

In this study, a Support Vector Machine (SVM) 
classifier was employed to detect examinees with 
aberrant response patterns, as flagged by the lz or 
lz* indices. The SVM model was implemented 
using the SVC class from the scikit-learn library 
in Python. The default SVM configuration with a 
radial basis function (RBF) kernel was used, 
which allows the model to capture non-linear 
relationships in the data.  

Neural networks (NNs): NNs are a class of 
machine learning models inspired by the 
structure and function of the human brain. They 
consist of layers of interconnected processing 
nodes (neurons), where each neuron applies a 
transformation to the input and passes the result 
to subsequent layers. Each connection between 
neurons is associated with a weight that is 
learned during training through optimization 
algorithms such as stochastic gradient descent 
and backpropagation. To classify examinees 
based on aberrant response pattern identified by 
the lz or lz* indices, a feedforward neural 
network was implemented using TensorFlow and 
Keras. 

In the current study, the architecture of the neural 
network included the following items: 

• An input layer with 200 features 
(corresponding to the number of items), 

• Two hidden layers with ReLU activation 
functions, 

• Dropout layers for regularization to 
mitigate overfitting, and 

• A final output layer with a sigmoid 
activation function for binary 
classification. 

4. Software for Estimation 

In this experimental stage, we used Google 
Colab for estimation. Oversample method was 
applied in Colab to make sure all aberrant 
response patterns have been sampled when 
training the model. 

5. Results 

One essential tool to evaluate the performance of 
machine learning models is confusion matrix. A 
confusion matrix is a simple table that shows 
how well a classification model is performed by 
comparing its predictions to the actual results. A 
confusion matrix adapted to the context of the 
current study is presented in Table 3 on page 7. 
Below is a brief explanation on evaluation 
metrics that applied in the study to evaluate the 
performance of these supervised machine 
learning mothods. 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Precision focuses on the accuracy of the model’s 
positive predictions. It tells us how many of the 
instances predicted as positive are actually 
positive.  

Recall/Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Recall measures the proportion of correctly 
predicted positive instances among all actual 
positive instances. 

F1score=2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

F1 score combines precision and recall into a 
single metric to balance their trade-off. It 
provides a better sense of a model’s overall 
performance, particularly for imbalanced 
datasets. F1 score ranges from 0 to 1, with 1 
indicating the best possible performance. 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 

Accuracy measures how often the model’s 
predictions are correct overall. It gives a general 
idea of how well the model is performing.  

In the current study, under different conditions 
on the number of aberrant response pattern, the 
resulting classification performance was 
compared among five supervised machine 
learning models. Tables 4 and 5 on pages 8 and 9 
summarize the classification performance of five 
machine learning models in detecting aberrant 
response patterns as identified by the Lz and lz* 
index, respectively. 

Results in these two tables show that, under the 
condition of the real number of flagged cases, 
most models—particularly KNN and SVM—
struggled to detect aberrant responses, often 
yielding near-zero F1-scores. Logistic regression 
consistently achieved high precision but suffered 
from low recall, while Naïve Bayes and neural 
networks offered more balanced but modest 
performance. These results underscore the 
effectiveness of simulation-based data 
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augmentation for enhancing model sensitivity 
and suggest that sample size and class balance 
are critical factors in building reliable aberrant 
response detectors. 

 

6. Conclusion 

In this study, we implemented five supervised 
machine learning models in detecting aberrant 
response pattern identified by lz and lz* indices. 
Across both the Lz and Lz* indices, machine 
learning models demonstrated consistently high 
accuracy in identifying normal response patterns. 
However, performance in detecting aberrant 
response patterns varied considerably and was 
highly sensitive to class imbalance. As the 
number of aberrant responses increased through 
simulation (1x and 2x the original cases), all 
models showed marked improvement in 
identifying aberrant patterns, with F1-scores for 
class 1 increasing by 2–3 times or more. 

In our research, the primary goal of this study 
has been to compare and choose the best 
machine learning models. Based on the 
evaluation metrics—including precision, recall, 
and F1 score—logistic regression and neural 
network models demonstrated the strongest 
performance in detecting aberrant response 
patterns (in the condition of a real number of 
aberrant response pattern). However, it is 
important to note that training the neural network 
required substantially longer computation time 
compared to logistic regression. While both 
models show promise, their effectiveness should 
be further validated using independent datasets to 
ensure generalizability. Future research may also 
explore the potential of alternative machine 
learning models to enhance detection accuracy 
and efficiency in various operational contexts. 
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