@inproceedings{baldwin-2025-using,
title = "Using Generative {AI} to Develop a Common Metric in Item Response Theory",
author = "Baldwin, Peter",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.30/",
pages = "281--289",
ISBN = "979-8-218-84228-4",
abstract = "We propose a method for linking independently calibrated item response theory (IRT) scales using large language models to generate shared parameter estimates across forms. Applied to medical licensure data, the approach reliably recovers slope values across all conditions and yields accurate intercepts when cross-form differences in item difficulty are small."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baldwin-2025-using">
<titleInfo>
<title>Using Generative AI to Develop a Common Metric in Item Response Theory</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>We propose a method for linking independently calibrated item response theory (IRT) scales using large language models to generate shared parameter estimates across forms. Applied to medical licensure data, the approach reliably recovers slope values across all conditions and yields accurate intercepts when cross-form differences in item difficulty are small.</abstract>
<identifier type="citekey">baldwin-2025-using</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.30/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>281</start>
<end>289</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Generative AI to Develop a Common Metric in Item Response Theory
%A Baldwin, Peter
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F baldwin-2025-using
%X We propose a method for linking independently calibrated item response theory (IRT) scales using large language models to generate shared parameter estimates across forms. Applied to medical licensure data, the approach reliably recovers slope values across all conditions and yields accurate intercepts when cross-form differences in item difficulty are small.
%U https://aclanthology.org/2025.aimecon-main.30/
%P 281-289
Markdown (Informal)
[Using Generative AI to Develop a Common Metric in Item Response Theory](https://aclanthology.org/2025.aimecon-main.30/) (Baldwin, AIME-Con 2025)
ACL