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Abstract

Item response theory (IRT) models are
subject to scale indeterminacy, causing
parameters to be arbitrarily scaled.
Consequently,  parameters from
independently calibrated test forms are
not directly comparable without first
estimating the linear transformation
that aligns their respective scales. This
paper introduces a novel procedure that
uses large language models (LLMs) to
estimate the transformation’s slope and
intercept. The method is evaluated
using empirical data from a medical
licensure exam. Results indicate that
the LLM-based approach consistently
recovers the slope across conditions,
while intercept recovery is moderately
sensitive to differences in average item
difficulty between forms and improves
as that difference narrows.

Introduction

When examinees take different test forms
designed to measure the same trait, their scores
must be adjusted for comparability. For number-
correct scores (or transformations thereof), this
process is called equating. In IRT, parameters are
invariant up to a linear transformation; thus, while
equating per se is unnecessary, a similar scaling
adjustment is still required to ensure
comparability across independently calibrated
forms. After this adjustment, model parameters
are expressed on a common scale—sometimes

I'Note: D is a scaling factor equal to D =1.702 that
allows the more mathematically tractable logistic
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called developing a common metric (Stocking and
Lord, 1983).

This scaling is necessary because the origin and
unit of the latent scale must be arbitrarily fixed—
directly or indirectly—to identify the model.
Independently calibrated forms will therefore
generally differ in scale, requiring a linear
transformation before parameter estimates can be
compared. This paper addresses this problem and
proposes a procedure that uses GPT-based LLMs
to estimate the slope and intercept of the required
transformation. The method is illustrated using
empirical data from the medical licensure domain.

2 Background

2.1 Problem Definition

Although scale indeterminacy affects all IRT
models, we illustrate the issue using the two-
parameter logistic model (2PL):

1
Pe)= 1+

e—Da(ﬁ—b) ’

(1)

where & <R denotes proficiency, ae R, is

item discrimination (equal to 4 times the item
response function’s (IRF) maximum slope), and
beR is the item difficulty, the point on the
difficulty/proficiency scale where the IRF
inflects). P(6) gives the probability of a correct

response for an examinee with proficiency 6.!

A key feature of IRT is parameter invariance:
item parameters are independent of examinee
sample, and examinee proficiencies are
independent of item set (Hambleton et al. 1991).
However, this invariance holds only up to a linear

formulation to closely resemble the normal ogive function,
which preceded the logistic function in the historical
development of IRT (Birnbaum, 1968).
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transformation: for any slope jand intercept &,
the transformation a'=a/j, b'=bj+k, and
0 =0j+k leaves P(0) unchanged.

This scale indeterminacy is expected—these
model parameters are not directly observable,
requiring arbitrary scaling—but it complicates
comparisons across independently calibrated test
forms. Conventions exist for identifying IRT
models (e.g., setting @ ’s mean and SDto 0 and 1,
respectively) but they do not guarantee a shared
scale across forms, since these constraints are
applied separately to each. A linear
transformation is still required. We denote its
slope and intercept 7 and 77, respectively.

To estimate y and 77, something common

across forms is needed (Baldwin and Clauser
2022), typically in the form of shared parameters
(e.g., anchor items). These common parameters,
being invariant up to a linear transformation, can
be used to estimate the linear relationship between
scales. Many well-known linking methods take
this approach (Hambleton and Swaminathan
1985; Kolen and Brennan 2014). Absent common
items, ancillary covariates that correlate with
model parameters can sometimes be used (e.g.,
Mislevy et al. 1993; Wiberg and Brénberg 2015).

A single-group design, in which both forms are
administered to the same examinees, allows
estimation of the transformation constants via
shared proficiencies. However, this approach is
often infeasible due to examinee burden. More
common is the non-equivalent groups with
anchor test design. Although less demanding for
examinees, it relies on item parameter
invariance—an assumption that may be violated
due to item exposure, evolving curricula, or
changes in exam preparation, leading to item
parameter drift.

To address these limitations, we propose using
generative Al to create shared parameters across
forms. Specifically, GPT-based LLMs are tasked
with estimating item-level success probabilities
for typical examinees from defined groups. These
probabilities are used to derive a common set of
synthetic proficiency parameters across forms—
analogous to a single-group design—enabling
estimation of the transformation constants without
requiring common items, examinees, or external
covariates.

The proposed approach is illustrated using
empirical data from the medical licensure domain.
It performed well, particularly for slope
estimation, with high consistency across all
conditions. Intercept estimates were more

sensitive to differences in average item difficulty
between forms, with smaller gaps yielding more
accurate results.

2.2 Related Work

A review of the literature did not identify any
studies that use LLMs directly to develop a
common metric. However, several studies address
related challenges, particularly item difficulty
prediction—a long-standing topic in educational
and psychological measurement (e.g., Beinborn et
al., 2015; Huang et al., 2017; Ha and Yaneva,
2018). Current LLM-based approaches to
difficulty prediction fall into two categories: (a)
item-parameter prediction and (b) item-specific
examinee-group performance prediction. The
latter, while not identical to the task described
here, is more closely aligned. Each approach is
discussed below.

Item-parameter prediction estimates classical
or IRT-based indices from item text. For example,
Razavi and Powers (2025) used GPT-based
models to predict difficulty for K—5 math and
reading items. Their feature-based ensemble
models outperformed direct rating methods,
reaching correlations up to » = 0.87 with empirical
difficulties. However, accuracy may decline in
domains requiring specialized knowledge or
complex reasoning. For instance, in a shared task
using medical multiple-choice questions (MCQs),
Yaneva et al. (2024) reported that difficulty
estimation remains challenging in this domain.

The second approach—item-specific
performance prediction—models how systems or
subgroups perform on individual items. Studies
have linked item difficulty for question-answering
systems to human performance (e.g., Yaneva et
al., 2019; Uto et al., 2024; Liu et al., 2025; Maeda,
2025), though not always with high precision.
More relevant here are studies modeling
interactions between examinee subgroups and
items. Feng et al. (2025) used chain-of-thought
prompting and synthetic response generation to
predict MCQ difficulty for defined cohorts. Park
et al. (2024) used Al models as proxies for
students at different skill levels. While promising,
such methods raise concerns about bias in
synthetic responses and highlight the need for
further validation.
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3 Methodology

3.1 Proposed Procedure
Let P

g.,m,i

denote the predicted probability that

a typical examinee from group g will answer

item i correctly, according to LLM m .

Likewise, for test form f',let P, - be the vector

of predicted probabilities for that set of items.
Now, suppose an IRT model is fit to an empirical
dataset for form f , yielding item parameter

estimates. These estimates can then be used to

estimate a proficiency value € that, in some
g.m.f

way, best describes P, , .

Because this process can be replicated multiple

times, let 0 denote the estimate of @

g.m.f
associated with the 7th such replication. To
improve stability, we can then take the average
across R replications:

= 1& L
ggwm,f = Ezeg,m,.ﬂr : (2)

r=l1

g.m,f.r

This average reduces the impact of sampling
variability from LLM output and estimation
noise.

Because IRT proficiencies are form-invariant,
were 6, . to be estimated using two different

test forms, the resulting two ég,m’ , will be the

same (excepting random error) up fo a linear
transformation:

~

~

Hg,m,_/'B ~ g,m,f;,\,]/_'_n’ (3)

where the subscripts f, and f, , indicate base
form or new form, respectively, and y and 7
represent the slope and intercept of the
transformation needed to place f), ’s estimates on

the scale of f.

Given G examinee groups and M LLMs, this
procedure yields GxAM mean estimated

proficiencies, 6 for each form. The

g.m,f 7
transformation constants ¥ and 77 can then be

estimated using the mean and sigma method
(Marco 1977; Kolen and Brennan 2014), which
matches the means and standard deviations of the
two sets:

y=—F=— 4
sD(6,..., )
ﬁ = éfE _yéfN ’ (5)
where
T 1 & X~
=— 6
0 =G ZZ . (6)
G M ,— —\2
SD( gm/) \/ Z_;Z_:‘( gmj ) . (7)
Notably, this application differs from

traditional difficulty prediction in that there is no

requirement that 6 reflect the actual

g.m,f
proficiency of a typical examinee in group g .

That is, accuracy of )

..y 18 less important than

form-invariance.

4 Experiments

4.1 Examinee Response Data

We evaluated the procedure using empirical
data from the Step 2 exam of the United States
Medical Licensing Examination (USMLE®)
sequence. Step 2 is typically taken by medical
students after their third year of medical school,
following their core rotations, and consists of
multiple simultaneously administered test forms,
each with ~318 MCQs. This study used ~220
items (text-based and table-based) from a single
form, along with responses from ~1,500
examinees.

Responses were modeled using the 2PL.
(Equation 1). Because all items came from a
single form, item parameters were estimated on a
common scale. Parameters were scaled such that
proficiencies had a mean of 0 and SD of 1,
simplifying interpretation.

4.2 LLM Data

For each MCQ, a prompt was generated
instructing the LLM to act as “an expert medical
education analyst” with “thorough knowledge of
how medical students and residents perform on
USMLE®-style multiple-choice questions.” The
LLM was then told: “You are tasked with
predicting the performance of the typical examinee
from each of five different examinee groups on the
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following USMLE® multiple-choice question.”
The prompt included the MCQ, its correct answer,
exam label (Step 2), item type (e.g., “diagnosis”),
and topic area (e.g., “cardio: infectious disorders”).
The five examinee groups—first- through fourth-
year medical students and first-year medical
residents (PGY-1)—were listed, followed by the
judgment task: “Think carefully (internally) about
each group’s level of training, typical preparedness,
and likelihood of arriving at the correct answer...
Factor in both knowledge and potential guessing...
Provide one probability... for each of the five
groups... [that] represents the probability that a
typical examinee within that group will answer the
question correctly.”

For each of fifty replications, the prompt was
submitted separately to three large language
models (LLMs)—GPT-ol, GPT-03, and GPT-
4.1—via the OpenAl API (OpenAl, 2024). To
ensure item security, we used private deployments
of these models through Azure OpenAl. While this
was the implementation used here, the procedure
itself is model-agnostic.

In this way, G=5, M =3, and R=50, yields
a set 5x3x50=750 P for each of the

g.m,i
approximately 220 MCQs totaling approximately
5x3x50x220=165,000 predicted probabilities

across the ~220 items.

4.3 Experiments

The full set of items was randomly divided into
two equal-length artificial test forms: a base form
and a new form. Form difficulty was manipulated
as two study factors: (a) across-form difference in
mean item difficulty and (b) across-form
difference in the standard deviation of item
difficulties. Each factor had 11 symmetrically
spaced levels (from -0.25 to 0.25 in 0.05
increments), varied independently, resulting in 21
conditions (10 for mean differences, 10 for SD
differences, and 1 baseline condition). An
exploratory analysis using a fully crossed design
found that slope estimates were largely insensitive
to changes in mean item difficulty, and intercept
estimates were similarly unaffected by changes in
item difficulty spread. For this reason, rather than
employing a fully crossed design, we explored
only conditions in which exactly one parameter
was varied at a time, while holding the other
parameter fixed at zero.

While no specific proficiency estimation
procedure is required, this study used a two-step
empirical Bayes approach with Newton—Raphson

optimization designed to ensure monotonic
deviance reduction through step-size constraints
and backtracking. Initial estimates were computed
using diffuse (flat) priors. The empirical mean and
standard deviation of these estimates then served
as Gaussian priors in a refined second phase. At
each iteration, values were optimized by
minimizing deviance—the sum of the negative
log-likelihood of LLM-predicted response
probabilities and a Gaussian prior penalty.
Newton updates were derived analytically from
the 2PL model (Equation 1), using closed-form
gradients and Hessians based on item parameters
from the empirical dataset. Step sizes were
clamped, and backtracking ensured monotonic
deviance reduction. The estimation procedure
terminated once convergence criteria (step sizes <

1x107®) were met.
Once 6

s Values were computed for all
replications, they were averaged as described in
Equation 2, yielding 15 values for each artificial
test form. These proficiency estimates were then
used to estimate the slope and intercept of the
transformation line using Equations 4 and 5.
Using the same set of 165,000 predicted
probabilities, the procedure—item assignment,
proficiency estimation, and transformation
recovery—was repeated multiple times. Because
item assignments were randomized (within

specified difficulty constraints), the resulting y
and 7 varied across repetitions. This variation

reflects sensitivity to item selection, although it is
smaller than would be expected had each
repetition drawn from a new item pool. For this
reason, the mean y and 7 across repetitions

were calculated for each of the 21 difference-in-
form-difficulty conditions, and a new repetition—
considered #ypical—was generated that produced
y and 7 within 0.005 of these means. These

“typical” artificial test forms served as stable
reference points for evaluating sampling
variability more accurately via bootstrapping.
One thousand bootstrap draws were created by
independently sampling, with replacement, both
LLM replications and items within each form. For

each bootstrap draw, a y, and 7, were

estimated. These bootstrap-estimated
transformation constants were then used to
approximate the sampling distributions of 7 and

A

n.
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4.4 Evaluation Criteria

Because all items were jointly calibrated, the
“true” transformation function was the identity
function: y=1 and 7=0 . Accuracy was

evaluated by the proximity of estimated values to
these targets.
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5 Results

5.1 Recovery of Transformation Function
Slope

Figure 1 shows the estimated slopes as a function
of the difference in item-difficulty standard
deviations between forms. Also shown are the
boundaries for the middle 95% of the distribution

975%

.025%

—O— Estimated Slope
- - - = True Slope

.0 1 2 3

Difference in Item Difficulty Standard Deviation Across Forms
Figure 1: Estimated transformation function slope (black line) as a function of difference in item difficulty
standard deviations. The boundaries for the middle 95% of bootstrap slopes are also given (light grey

lines); the broken grey line shows the true slope.
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Transformation Function Intercept
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975%

.025%

—O— Estimated Intercept
- - - - True Intercept

.0 1 2 3

Difference in Mean Item Difficulty Estimate Across Forms

Figure 2: Estimated transformation function intercept (black line) as a function of difference in mean item
difficulty. The boundaries for the middle 95% of bootstrap intercepts are also given (light grey lines); the
broken grey line shows the true slope. Note: the vertical axis scale spans .70 whereas for Figure 1, this axis

spans only .20.
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of bootstrap slopes (7, ; light grey) and the true
slope ( =1 broken grey line). Across all
conditions, the estimated slope deviates by no
more than 0.03 from the true value. The estimates
are most accurate when the difference in item-
difficulty standard deviations between forms is
close to zero. Likewise, the span of the 95%
bootstrap sampling distribution is less than 0.09
for all conditions.

5.2 Recovery of Transformation Function
Intercept

Figure 2 shows the estimated intercepts as a
function of the difference in mean item difficulty
between forms, following the same structure as
Figure 1. The boundaries for the middle 95% of

bootstrap intercepts (77, ; light grey) and the true
intercept (77 = 0 ; broken grey line) are also shown.

Intercept estimates improve as the difference in
mean item difficulty across forms approaches zero.
However, the vertical axis in Figure 2 spans 3.5
times the range of Figure 1, indicating greater
variability. In the most extreme condition, the
absolute difference between the true and estimated

intercepts (|ﬁ—77|) reaches 0.11. This difference

does not fall below 0.05 until the across-form
difference in mean item difficulty is < 0.10.
Similarly, the span associated with the middle 95%
of the bootstrap intercepts is greater than that
observed for the slopes—with spans up to 0.45.

6 Conclusion

6.1 Discussion

This paper describes a procedure for estimating
the transformation constants required to place
independently calibrated test forms on a common
scale. It follows a single-group (common-person)
design (Kolen and Brennan, 2014), but instead of
using common examinees, proficiency estimates
for a typical test taker from each of five
predefined groups are used. These estimates are
based on judgment tasks given to three LLMs:
GPT-ol, GPT-03, and GPT-4.1. The method was
demonstrated using real examinee-response data
from the USMLE® Step 2 exam.

The procedure recovered transformation-
function slopes with high precision: across all
conditions, slope estimates deviated from true
values by no more than 0.03. Intercept estimates
were more sensitive to model-data misfit and

exhibited greater variability, particularly when
mean form difficulties differed substantially. This
likely reflects residual dependencies between the
LLM-generated proficiency estimates and the
item pool, undermining the assumption of
conditional independence.

In IRT, proficiency parameters are item-set
invariant. While proficiency estimates are never
fully independent of the items used to derive
them, the LLM-generated estimates in this study
appeared  especially  sensitive to item
characteristics. This suggests a degree of
conditional dependence that may stem from
misalignment between LLM-predicted
probabilities and the modeled item response
function. Because the success of the proposed
procedure relies on form-invariant proficiency
estimates, such dependencies likely contributed to
the observed difficulties in recovering intercepts.

Developing a common metric across test forms
administered at different points in time presents a
challenge: common items must exhibit invariance
over time. For testing programs where item
parameter drift is a concern, this is a vexing
problem. The procedure proposed here does not
require items to have this property. Instead, it relies
on LLMs to produce form-invariant proficiency
estimates, and it is these estimates—rather than
common item parameters—that are used to
estimate the transformation constants needed to
create a common scale across forms. If successful,
the proposed procedure represents a considerably
more secure method for maintaining a common
scale over time. This will be especially attractive to
testing programs that administer high-stakes tests
following an episodic testing design.

6.2 Limitations

Although the procedure is not specific to any
testing program, content domain, IRT model, or
LLM, it was demonstrated using medical-domain
items from the USMLE®, the 2PL IRT model, and
three OpenAl LLMs. These design choices limit
the generalizability of the findings.

The USMLE® assesses highly specialized
technical content and is taken by a relatively
homogeneous examinee population. It is unclear
whether the findings extend to more general
domains. However, previous studies have reported
stronger performance for LLM-based predictions
in broader content areas (e.g., Uto et al., 2024; Liu
et al., 2025; Maeda, 2025; Razavi and Powers
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2025), suggesting that the current results may
underestimate the method’s effectiveness in less
technical contexts.

While the 2PL model is widely used, some
testing programs—particularly in K—12 settings—
prefer models like the 3PL, which incorporate
additional complexity and assumptions about
guessing behavior. Although the proposed
procedure is not restricted to any single IRT model,
it remains unclear whether LLM-based predictions
align equally well under models other than the 2PL.

The OpenAl models used in this study are
widely known, but they are neither the only nor
necessarily the most effective LLMs for this task.
Alternative models—used individually or in
ensembles—may offer improved accuracy and
consistency. Moreover, prediction quality is likely
influenced by prompt phrasing and model settings.
This study employed a fixed prompt and the default
temperature, but future work should examine how
variations in prompt structure and sampling
parameters affect prediction accuracy and
downstream performance. Finally, data security
remains a critical concern. This study used private
LLM deployments with no data logging or model
training from inputs. However, not all models offer
this level of protection—an  important
consideration for testing programs concerned with
safeguarding test content.

Finally, the number of examinee groups and the
number of items per form were chosen to suit the
illustrative nature of this study. These design
aspects may influence the quality of estimated
transformation constants and the method’s
scalability. Other programs are likely to involve
different group structures or item counts, and the
procedure’s performance under such conditions
remains untested.

6.3 Future Work

Although the procedure performed well under most
conditions, it may still fall short of the precision
required for high-stakes applications, and several
avenues for improvement remain.

First, the procedure is not limited to a fixed
number of LLMs. Although this study used three
widely known models, incorporating additional
models—or employing ensemble strategies—may
further improve the quality and stability of the
proficiency estimates used to derive the
transformation constants.

Similarly, although five examinee groups were
used here, additional or alternative groupings could
further enhance performance. Exploring optimal
group configurations and model-specific strengths
across subpopulations may yield more robust
results. Increasing the number of examinee groups
would also increase the number of independent
estimates contributing to the transformation
calculation, potentially improving precision.

The greatest limitation of the procedure lies in
intercept estimation, specifically the bias in 7

when test forms differ in average difficulty. This
issue may be mitigated through improved form
design. For example, assembling forms to have
closely matched mean difficulties can reduce the
conditions under which intercept estimation
becomes unstable. Importantly, precise individual
difficulty estimates are not needed for this purpose;
only mean difficulty must be controlled. This may
be more tractable using existing difficulty-
prediction methods.

Finally, alternative test assembly and delivery
strategies could further improve the method’s
performance. For example, consider a scenario in
which a large number of forms—comprising both
unique and anchor items—are administered
concurrently. These forms could be placed on a
common metric using traditional IRT linking
techniques (e.g., nonequivalent groups with anchor
tests). Now suppose that multiple such
administrations occur over time, as in an episodic
testing design. In this case, large pools of
administration-specific items, already placed on a
common scale within each administration, could
serve as input to the proposed procedure, yielding
substantially larger item sets for estimating the
required across-administration transformation.
Future research should investigate such strategies,
which focus on optimizing test design conditions
rather than altering the procedure itself.
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