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Abstract 

Item response theory (IRT) models are 

subject to scale indeterminacy, causing 

parameters to be arbitrarily scaled. 

Consequently, parameters from 

independently calibrated test forms are 

not directly comparable without first 

estimating the linear transformation 

that aligns their respective scales. This 

paper introduces a novel procedure that 

uses large language models (LLMs) to 

estimate the transformation’s slope and 

intercept. The method is evaluated 

using empirical data from a medical 

licensure exam. Results indicate that 

the LLM-based approach consistently 

recovers the slope across conditions, 

while intercept recovery is moderately 

sensitive to differences in average item 

difficulty between forms and improves 

as that difference narrows. 

1 Introduction 

When examinees take different test forms 

designed to measure the same trait, their scores 

must be adjusted for comparability. For number-

correct scores (or transformations thereof), this 

process is called equating. In IRT, parameters are 

invariant up to a linear transformation; thus, while 

equating per se is unnecessary, a similar scaling 

adjustment is still required to ensure 

comparability across independently calibrated 

forms. After this adjustment, model parameters 

are expressed on a common scale—sometimes 

 
1 Note: D  is a scaling factor equal to 1.702D =  that 

allows the more mathematically tractable logistic 

called developing a common metric (Stocking and 

Lord, 1983). 

This scaling is necessary because the origin and 

unit of the latent scale must be arbitrarily fixed—

directly or indirectly—to identify the model. 

Independently calibrated forms will therefore 

generally differ in scale, requiring a linear 

transformation before parameter estimates can be 

compared. This paper addresses this problem and 

proposes a procedure that uses GPT-based LLMs 

to estimate the slope and intercept of the required 

transformation. The method is illustrated using 

empirical data from the medical licensure domain. 

2 Background 

2.1 Problem Definition 

Although scale indeterminacy affects all IRT 

models, we illustrate the issue using the two-

parameter logistic model (2PL): 
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where    denotes proficiency, 0a   is 

item discrimination (equal to 4 times the item 

response function’s (IRF) maximum slope), and 

b  is the item difficulty, the point on the 

difficulty/proficiency scale where the IRF 

inflects). ( )P   gives the probability of a correct 

response for an examinee with proficiency  .1 

A key feature of IRT is parameter invariance: 

item parameters are independent of examinee 

sample, and examinee proficiencies are 

independent of item set (Hambleton et al. 1991). 

However, this invariance holds only up to a linear 

formulation to closely resemble the normal ogive function, 

which preceded the logistic function in the historical 

development of IRT (Birnbaum, 1968).  
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transformation: for any slope j and intercept k , 

the transformation /a a j = , b bj k = + , and 

j k  = +  leaves ( )P   unchanged. 

This scale indeterminacy is expected—these 

model parameters are not directly observable, 

requiring arbitrary scaling—but it complicates 

comparisons across independently calibrated test 

forms. Conventions exist for identifying IRT 

models (e.g., setting  ’s mean and SD to 0 and 1, 

respectively) but they do not guarantee a shared 

scale across forms, since these constraints are 

applied separately to each. A linear 

transformation is still required. We denote its 

slope and intercept   and  , respectively. 

To estimate   and  , something common 

across forms is needed (Baldwin and Clauser 

2022), typically in the form of shared parameters 

(e.g., anchor items). These common parameters, 

being invariant up to a linear transformation, can 

be used to estimate the linear relationship between 

scales. Many well-known linking methods take 

this approach (Hambleton and Swaminathan 

1985; Kolen and Brennan 2014). Absent common 

items, ancillary covariates that correlate with 

model parameters can sometimes be used (e.g., 

Mislevy et al. 1993; Wiberg and Bränberg 2015). 

A single-group design, in which both forms are 

administered to the same examinees, allows 

estimation of the transformation constants via 

shared proficiencies. However, this approach is 

often infeasible due to examinee burden. More 

common is the non-equivalent groups with 

anchor test design. Although less demanding for 

examinees, it relies on item parameter 

invariance—an assumption that may be violated 

due to item exposure, evolving curricula, or 

changes in exam preparation, leading to item 

parameter drift.  

To address these limitations, we propose using 

generative AI to create shared parameters across 

forms. Specifically, GPT-based LLMs are tasked 

with estimating item-level success probabilities 

for typical examinees from defined groups. These 

probabilities are used to derive a common set of 

synthetic proficiency parameters across forms—

analogous to a single-group design—enabling 

estimation of the transformation constants without 

requiring common items, examinees, or external 

covariates. 

The proposed approach is illustrated using 

empirical data from the medical licensure domain. 

It performed well, particularly for slope 

estimation, with high consistency across all 

conditions. Intercept estimates were more 

sensitive to differences in average item difficulty 

between forms, with smaller gaps yielding more 

accurate results. 

2.2 Related Work 

A review of the literature did not identify any 

studies that use LLMs directly to develop a 

common metric. However, several studies address 

related challenges, particularly item difficulty 

prediction—a long-standing topic in educational 

and psychological measurement (e.g., Beinborn et 

al., 2015; Huang et al., 2017; Ha and Yaneva, 

2018). Current LLM-based approaches to 

difficulty prediction fall into two categories: (a) 

item-parameter prediction and (b) item-specific 

examinee-group performance prediction. The 

latter, while not identical to the task described 

here, is more closely aligned. Each approach is 

discussed below. 

Item-parameter prediction estimates classical 

or IRT-based indices from item text. For example, 

Razavi and Powers (2025) used GPT-based 

models to predict difficulty for K–5 math and 

reading items. Their feature-based ensemble 

models outperformed direct rating methods, 

reaching correlations up to r = 0.87 with empirical 

difficulties. However, accuracy may decline in 

domains requiring specialized knowledge or 

complex reasoning. For instance, in a shared task 

using medical multiple-choice questions (MCQs), 

Yaneva et al. (2024) reported that difficulty 

estimation remains challenging in this domain. 

The second approach—item-specific 

performance prediction—models how systems or 

subgroups perform on individual items. Studies 

have linked item difficulty for question-answering 

systems to human performance (e.g., Yaneva et 

al., 2019; Uto et al., 2024; Liu et al., 2025; Maeda, 

2025), though not always with high precision. 

More relevant here are studies modeling 

interactions between examinee subgroups and 

items. Feng et al. (2025) used chain-of-thought 

prompting and synthetic response generation to 

predict MCQ difficulty for defined cohorts. Park 

et al. (2024) used AI models as proxies for 

students at different skill levels. While promising, 

such methods raise concerns about bias in 

synthetic responses and highlight the need for 

further validation. 
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3 Methodology 

3.1 Proposed Procedure 

Let , ,g m iP  denote the predicted probability that 

a typical examinee from group g  will answer 

item i  correctly, according to LLM m . 

Likewise, for test form f , let , ,g m fP  be the vector 

of predicted probabilities for that set of items. 

Now, suppose an IRT model is fit to an empirical 

dataset for form f , yielding item parameter 

estimates. These estimates can then be used to 

estimate a proficiency value 
, ,
ˆ

g m f
  that, in some 

way, best describes , ,g m fP .  

Because this process can be replicated multiple 

times, let 
, , ,
ˆ

g m f r
  denote the estimate of 

, ,g m f


associated with the thr  such replication. To 

improve stability, we can then take the average 

across R  replications:  

 
, , , , ,

1

ˆ ˆ1
g m f g m f r

R

rR
 

=

=  . (2) 

This average reduces the impact of sampling 

variability from LLM output and estimation 

noise. 

Because IRT proficiencies are form-invariant, 

were 
, ,g m f

  to be estimated using two different 

test forms, the resulting two 
, ,
ˆ

g m f
  will be the 

same (excepting random error) up to a linear 

transformation: 

 
, , , ,
ˆ ˆ

B Ng m f g m f
    + , (3) 

where the subscripts Bf  and Nf , indicate base 

form or new form, respectively, and   and   

represent the slope and intercept of the 

transformation needed to place Nf ’s estimates on 

the scale of Bf . 

Given G  examinee groups and M  LLMs, this 

procedure yields G M  mean estimated 

proficiencies, 
, ,
ˆ

g m f
 , for each form. The 

transformation constants   and   can then be 

estimated using the mean and sigma method 

(Marco 1977; Kolen and Brennan 2014), which 

matches the means and standard deviations of the 

two sets:  
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 ˆ ˆˆ
B Nf f

  = − , (5) 

where 

 
, ,

1 1

ˆ ˆ1
f g m f

G M

g mGM
 

= =

=   (6) 

( ) ( ), , , ,

2

1 1

ˆ ˆ ˆ1
g m f g m f f

G M

g m

SD
GM

  
= =

= − . (7) 

Notably, this application differs from 

traditional difficulty prediction in that there is no 

requirement that 
, ,
ˆ

g m f
  reflect the actual 

proficiency of a typical examinee in group g . 

That is, accuracy of 
, ,
ˆ

g m f
  is less important than 

form-invariance. 

4 Experiments 

4.1 Examinee Response Data 

We evaluated the procedure using empirical 

data from the Step 2 exam of the United States 

Medical Licensing Examination (USMLE®) 

sequence. Step 2 is typically taken by medical 

students after their third year of medical school, 

following their core rotations, and consists of 

multiple simultaneously administered test forms, 

each with ~318 MCQs. This study used ~220 

items (text-based and table-based) from a single 

form, along with responses from ~1,500 

examinees. 

Responses were modeled using the 2PL 

(Equation 1). Because all items came from a 

single form, item parameters were estimated on a 

common scale. Parameters were scaled such that 

proficiencies had a mean of 0 and SD of 1, 

simplifying interpretation. 

4.2 LLM Data 

For each MCQ, a prompt was generated 

instructing the LLM to act as “an expert medical 

education analyst” with “thorough knowledge of 

how medical students and residents perform on 

USMLE®-style multiple-choice questions.” The 

LLM was then told: “You are tasked with 

predicting the performance of the typical examinee 

from each of five different examinee groups on the 
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following USMLE® multiple-choice question.” 

The prompt included the MCQ, its correct answer, 

exam label (Step 2), item type (e.g., “diagnosis”), 

and topic area (e.g., “cardio: infectious disorders”). 

The five examinee groups—first- through fourth-

year medical students and first-year medical 

residents (PGY-1)—were listed, followed by the 

judgment task: “Think carefully (internally) about 

each group’s level of training, typical preparedness, 

and likelihood of arriving at the correct answer… 

Factor in both knowledge and potential guessing... 

Provide one probability… for each of the five 

groups… [that] represents the probability that a 

typical examinee within that group will answer the 

question correctly.”  

For each of fifty replications, the prompt was 

submitted separately to three large language 

models (LLMs)—GPT-o1, GPT-o3, and GPT-

4.1—via the OpenAI API (OpenAI, 2024). To 

ensure item security, we used private deployments 

of these models through Azure OpenAI. While this 

was the implementation used here, the procedure 

itself is model-agnostic. 

In this way, 5G= , 3M = , and 50R= , yields 

a set 5 3 50 750  =   , ,g m iP   for each of the 

approximately 220 MCQs totaling approximately 

5 3 50 220 165,000   =   predicted probabilities 

across the ~220 items. 

4.3 Experiments 

The full set of items was randomly divided into 

two equal-length artificial test forms: a base form 

and a new form. Form difficulty was manipulated 

as two study factors: (a) across-form difference in 

mean item difficulty and (b) across-form 

difference in the standard deviation of item 

difficulties. Each factor had 11 symmetrically 

spaced levels (from -0.25 to 0.25 in 0.05 

increments), varied independently, resulting in 21 

conditions (10 for mean differences, 10 for SD 

differences, and 1 baseline condition). An 

exploratory analysis using a fully crossed design 

found that slope estimates were largely insensitive 

to changes in mean item difficulty, and intercept 

estimates were similarly unaffected by changes in 

item difficulty spread. For this reason, rather than 

employing a fully crossed design, we explored 

only conditions in which exactly one parameter 

was varied at a time, while holding the other 

parameter fixed at zero. 

While no specific proficiency estimation 

procedure is required, this study used a two-step 

empirical Bayes approach with Newton–Raphson 

optimization designed to ensure monotonic 

deviance reduction through step-size constraints 

and backtracking. Initial estimates were computed 

using diffuse (flat) priors. The empirical mean and 

standard deviation of these estimates then served 

as Gaussian priors in a refined second phase. At 

each iteration, values were optimized by 

minimizing deviance—the sum of the negative 

log-likelihood of LLM-predicted response 

probabilities and a Gaussian prior penalty. 

Newton updates were derived analytically from 

the 2PL model (Equation 1), using closed-form 

gradients and Hessians based on item parameters 

from the empirical dataset. Step sizes were 

clamped, and backtracking ensured monotonic 

deviance reduction. The estimation procedure 

terminated once convergence criteria (step sizes < 
61 10− ) were met. 

Once , , ,
ˆ
g m f r  values were computed for all 

replications, they were averaged as described in 

Equation 2, yielding 15 values for each artificial 

test form. These proficiency estimates were then 

used to estimate the slope and intercept of the 

transformation line using Equations 4 and 5. 

Using the same set of 165,000 predicted 

probabilities, the procedure—item assignment, 

proficiency estimation, and transformation 

recovery—was repeated multiple times. Because 

item assignments were randomized (within 

specified difficulty constraints), the resulting ̂  

and ̂  varied across repetitions. This variation 

reflects sensitivity to item selection, although it is 

smaller than would be expected had each 

repetition drawn from a new item pool. For this 

reason, the mean ̂  and ̂  across repetitions 

were calculated for each of the 21 difference-in-

form-difficulty conditions, and a new repetition—

considered typical—was generated that produced 

̂  and ̂  within 0.005 of these means. These 

“typical” artificial test forms served as stable 

reference points for evaluating sampling 

variability more accurately via bootstrapping. 

One thousand bootstrap draws were created by 

independently sampling, with replacement, both 

LLM replications and items within each form. For 

each bootstrap draw, a ˆ
d  and ˆ

d  were 

estimated. These bootstrap-estimated 

transformation constants were then used to 

approximate the sampling distributions of ̂  and 

̂ . 
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4.4 Evaluation Criteria 

Because all items were jointly calibrated, the 

“true” transformation function was the identity 

function: 1 =  and 0 = . Accuracy was 

evaluated by the proximity of estimated values to 

these targets. 

5 Results 

5.1 Recovery of Transformation Function 

Slope 

Figure 1 shows the estimated slopes as a function 

of the difference in item-difficulty standard 

deviations between forms. Also shown are the 

boundaries for the middle 95% of the distribution 

Figure 1:  Estimated transformation function slope (black line) as a function of difference in item difficulty 

standard deviations. The boundaries for the middle 95% of bootstrap slopes are also given (light grey 

lines); the broken grey line shows the true slope.  
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Figure 2: Estimated transformation function intercept (black line) as a function of difference in mean item 
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of bootstrap slopes ( ˆd ; light grey) and the true 

slope ( 1 = ; broken grey line). Across all 

conditions, the estimated slope deviates by no 

more than 0.03 from the true value. The estimates 

are most accurate when the difference in item-

difficulty standard deviations between forms is 

close to zero. Likewise, the span of the 95% 

bootstrap sampling distribution is less than 0.09 

for all conditions. 

5.2 Recovery of Transformation Function 

Intercept 

Figure 2 shows the estimated intercepts as a 

function of the difference in mean item difficulty 

between forms, following the same structure as 

Figure 1. The boundaries for the middle  5  of 

bootstrap intercepts ( ˆd ; light grey) and the true 

intercept ( 0 = ; broken grey line) are also shown. 

Intercept estimates improve as the difference in 

mean item difficulty across forms approaches zero. 

However, the vertical axis in Figure 2 spans 3.5 

times the range of Figure 1, indicating greater 

variability. In the most extreme condition, the 

absolute difference between the true and estimated 

intercepts ( ̂ −  ) reaches 0.11. This difference 

does not fall below 0.05 until the across-form 

difference in mean item difficulty is ≤ 0.10. 

Similarly, the span associated with the middle  5  

of the bootstrap intercepts is greater than that 

observed for the slopes—with spans up to 0.45.  

6 Conclusion 

6.1 Discussion 

This paper describes a procedure for estimating 

the transformation constants required to place 

independently calibrated test forms on a common 

scale. It follows a single-group (common-person) 

design (Kolen and Brennan, 2014), but instead of 

using common examinees, proficiency estimates 

for a typical test taker from each of five 

predefined groups are used. These estimates are 

based on judgment tasks given to three LLMs: 

GPT-o1, GPT-o3, and GPT-4.1. The method was 

demonstrated using real examinee-response data 

from the USMLE® Step 2 exam.  

The procedure recovered transformation-

function slopes with high precision: across all 

conditions, slope estimates deviated from true 

values by no more than 0.03. Intercept estimates 

were more sensitive to model–data misfit and 

exhibited greater variability, particularly when 

mean form difficulties differed substantially. This 

likely reflects residual dependencies between the 

LLM-generated proficiency estimates and the 

item pool, undermining the assumption of 

conditional independence. 

In IRT, proficiency parameters are item-set 

invariant. While proficiency estimates are never 

fully independent of the items used to derive 

them, the LLM-generated estimates in this study 

appeared especially sensitive to item 

characteristics. This suggests a degree of 

conditional dependence that may stem from 

misalignment between LLM-predicted 

probabilities and the modeled item response 

function. Because the success of the proposed 

procedure relies on form-invariant proficiency 

estimates, such dependencies likely contributed to 

the observed difficulties in recovering intercepts.  

 eveloping a common metric across test forms 

administered at different points in time presents a 

challenge: common items must exhibit invariance 

over time. For testing programs where item 

parameter drift is a concern, this is a vexing 

problem. The procedure proposed here does not 

require items to have this property. Instead, it relies 

on LLMs to produce form-invariant proficiency 

estimates, and it is these estimates—rather than 

common item parameters—that are used to 

estimate the transformation constants needed to 

create a common scale across forms. If successful, 

the proposed procedure represents a considerably 

more secure method for maintaining a common 

scale over time. This will be especially attractive to 

testing programs that administer high-stakes tests 

following an episodic testing design.  

6.2 Limitations 

Although the procedure is not specific to any 

testing program, content domain, IRT model, or 

LLM, it was demonstrated using medical-domain 

items from the USMLE®, the 2PL IRT model, and 

three OpenAI LLMs. These design choices limit 

the generalizability of the findings. 

The USMLE® assesses highly specialized 

technical content and is taken by a relatively 

homogeneous examinee population. It is unclear 

whether the findings extend to more general 

domains. However, previous studies have reported 

stronger performance for LLM-based predictions 

in broader content areas (e.g., Uto et al., 2024; Liu 

et al., 2025; Maeda, 2025; Razavi and Powers 
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2025), suggesting that the current results may 

underestimate the method’s effectiveness in less 

technical contexts. 

While the 2PL model is widely used, some 

testing programs—particularly in K–12 settings—

prefer models like the 3PL, which incorporate 

additional complexity and assumptions about 

guessing behavior. Although the proposed 

procedure is not restricted to any single IRT model, 

it remains unclear whether LLM-based predictions 

align equally well under models other than the 2PL. 

The OpenAI models used in this study are 

widely known, but they are neither the only nor 

necessarily the most effective LLMs for this task. 

Alternative models—used individually or in 

ensembles—may offer improved accuracy and 

consistency. Moreover, prediction quality is likely 

influenced by prompt phrasing and model settings. 

This study employed a fixed prompt and the default 

temperature, but future work should examine how 

variations in prompt structure and sampling 

parameters affect prediction accuracy and 

downstream performance. Finally, data security 

remains a critical concern. This study used private 

LLM deployments with no data logging or model 

training from inputs. However, not all models offer 

this level of protection—an important 

consideration for testing programs concerned with 

safeguarding test content. 

Finally, the number of examinee groups and the 

number of items per form were chosen to suit the 

illustrative nature of this study. These design 

aspects may influence the quality of estimated 

transformation constants and the method’s 

scalability. Other programs are likely to involve 

different group structures or item counts, and the 

procedure’s performance under such conditions 

remains untested.  

6.3 Future Work 

Although the procedure performed well under most 

conditions, it may still fall short of the precision 

required for high-stakes applications, and several 

avenues for improvement remain. 

First, the procedure is not limited to a fixed 

number of LLMs. Although this study used three 

widely known models, incorporating additional 

models—or employing ensemble strategies—may 

further improve the quality and stability of the 

proficiency estimates used to derive the 

transformation constants. 

Similarly, although five examinee groups were 

used here, additional or alternative groupings could 

further enhance performance. Exploring optimal 

group configurations and model-specific strengths 

across subpopulations may yield more robust 

results. Increasing the number of examinee groups 

would also increase the number of independent 

estimates contributing to the transformation 

calculation, potentially improving precision. 

The greatest limitation of the procedure lies in 

intercept estimation, specifically the bias in ̂

when test forms differ in average difficulty. This 

issue may be mitigated through improved form 

design. For example, assembling forms to have 

closely matched mean difficulties can reduce the 

conditions under which intercept estimation 

becomes unstable. Importantly, precise individual 

difficulty estimates are not needed for this purpose; 

only mean difficulty must be controlled. This may 

be more tractable using existing difficulty-

prediction methods. 

Finally, alternative test assembly and delivery 

strategies could further improve the method’s 

performance. For example, consider a scenario in 

which a large number of forms—comprising both 

unique and anchor items—are administered 

concurrently. These forms could be placed on a 

common metric using traditional IRT linking 

techniques (e.g., nonequivalent groups with anchor 

tests). Now suppose that multiple such 

administrations occur over time, as in an episodic 

testing design. In this case, large pools of 

administration-specific items, already placed on a 

common scale within each administration, could 

serve as input to the proposed procedure, yielding 

substantially larger item sets for estimating the 

required across-administration transformation. 

Future research should investigate such strategies, 

which focus on optimizing test design conditions 

rather than altering the procedure itself. 
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