@inproceedings{pan-etal-2025-patterns,
title = "Patterns of Inquiry, Scaffolding, and Interaction Profiles in Learner-{AI} Collaborative Math Problem-Solving",
author = "Pan, Zilong and
Ba, Shen and
Jiang, Zilu and
Li, Chenglu",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.32/",
pages = "297--305",
ISBN = "979-8-218-84228-4",
abstract = "This study investigates inquiry and scaffolding patterns between students and MathPal, a math AI agent, during problem-solving tasks. Using qualitative coding, lag sequential analysis, and Epistemic Network Analysis, the study identifies distinct interaction profiles, revealing how personalized AI feedback shapes student learning behaviors and inquiry dynamics in mathematics problem-solving activities."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pan-etal-2025-patterns">
<titleInfo>
<title>Patterns of Inquiry, Scaffolding, and Interaction Profiles in Learner-AI Collaborative Math Problem-Solving</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zilong</namePart>
<namePart type="family">Pan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shen</namePart>
<namePart type="family">Ba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zilu</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenglu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>This study investigates inquiry and scaffolding patterns between students and MathPal, a math AI agent, during problem-solving tasks. Using qualitative coding, lag sequential analysis, and Epistemic Network Analysis, the study identifies distinct interaction profiles, revealing how personalized AI feedback shapes student learning behaviors and inquiry dynamics in mathematics problem-solving activities.</abstract>
<identifier type="citekey">pan-etal-2025-patterns</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.32/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>297</start>
<end>305</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Patterns of Inquiry, Scaffolding, and Interaction Profiles in Learner-AI Collaborative Math Problem-Solving
%A Pan, Zilong
%A Ba, Shen
%A Jiang, Zilu
%A Li, Chenglu
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F pan-etal-2025-patterns
%X This study investigates inquiry and scaffolding patterns between students and MathPal, a math AI agent, during problem-solving tasks. Using qualitative coding, lag sequential analysis, and Epistemic Network Analysis, the study identifies distinct interaction profiles, revealing how personalized AI feedback shapes student learning behaviors and inquiry dynamics in mathematics problem-solving activities.
%U https://aclanthology.org/2025.aimecon-main.32/
%P 297-305
Markdown (Informal)
[Patterns of Inquiry, Scaffolding, and Interaction Profiles in Learner-AI Collaborative Math Problem-Solving](https://aclanthology.org/2025.aimecon-main.32/) (Pan et al., AIME-Con 2025)
ACL
- Zilong Pan, Shen Ba, Zilu Jiang, and Chenglu Li. 2025. Patterns of Inquiry, Scaffolding, and Interaction Profiles in Learner-AI Collaborative Math Problem-Solving. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers, pages 297–305, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).