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Abstract

This study investigates inquiry and
scaffolding patterns between students and
MathPal, a math AI agent, during
problem-solving tasks. Using qualitative
coding, lag sequential analysis, and
Epistemic Network Analysis, the study
identifies distinct interaction profiles,
revealing how personalized Al feedback
shapes student learning behaviors and
inquiry dynamics in  mathematics
problem-solving activities.

1 Introduction & Background

As generative artificial intelligence (GAI)
becomes increasingly integrated into K-12
settings, educators and researchers are starting to
explore how GAI tools can meaningfully support
student learning through interactive, adaptive
assistant (Lang et al., 2025). Recent studies have
shown that conversational Al tools can act as
learning companions, offering personalized
scaffolding and guiding students through complex
tasks in real time, particularly in K—12 contexts
(Kim & Kwon, 2025; Li et al., 2024). In
mathematics education, where students often
struggle with abstract reasoning and procedural
complexity in the subject such as algebra, Al
agents have the potential to provide personalized,
real-time feedback that bridges the gap between
instruction and independent inquiry.
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The idea of instructional scaffolding has long
emphasized the importance of timely support that
is tailored to the learner’s evolving needs
(Belland, 2017). In Al-integrated learning
environments, scaffolding can take the form of
prompts, hints, motivational encouragement, or
step-by-step guidance, each playing a crucial role
in sustaining engagement and deepening
understanding especially as students are solving
math problems independently (Rittle-Johnson &
Koedinger, 2005; Tay & Toh, 2023). Similarly,
inquiry-based  learning  frameworks have
highlighted how students' questioning behaviors,
exploration strategies, and reflection processes
contribute to meaningful learning (Artigue &
Blomhgj, 2013). Yet, less is known about how
these two dynamics—inquiry and scaffolding—
manifest when students interact with Al agents in
real-time problem-solving contexts.

This gap calls for a closer examination of how
Al-mediated interactions shape learning processes
in mathematics, particularly how students and ai
agents collaboratively navigate complex problem-
solving tasks. While previous studies have
demonstrated the effectiveness of intelligent
tutoring systems in enhancing performance and
engagement (Nifio-Rojas et al., 2024; Zhang &
Jia, 2017), relatively few have examined the
dialogic and adaptive qualities of these
interactions—particularly =~ from  the  dual
perspectives of student-initiated inquiry and Al-
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generated scaffolding. Moreover, although some
work has explored Al's responsiveness to student
input (Atherton et al., 2024; Kim et al., 2025),
there remains a lack of fine-grained analysis on
how specific types of student inquiries elicit
particular forms of scaffolding, and how these
patterns vary across learners.

To address this gap, this study examines how
high school students interact with MathPal
(MathPal, 2023), an Al conversational agent
designed to provide personalized support during
math problem-solving tasks. Grounded in growth
mindset and dialogic learning principles, MathPal
engages students through structured yet adaptive
conversation, offering hints, strategies, and
encouragement as they work through algebraic
problem sets. The integration of MathPal into real
classroom settings offers a rich opportunity to
explore the nature of Al-mediated learning
interactions and to better understand how students
navigate mathematical problem-solving tasks
colligatively with an Al agent.

This research is guided by two key aims. First,
researchers seek to analyze the patterns of inquiry
and scaffolding interactions that emerge during
student—MathPal problem-solving conversations.
By classifying the types of questions students pose
and the forms of support provided by Al,
researchers aim to identify recurring patterns and
interactional flows that characterize the learning
dialogue. Second, this study intends to investigate
how students differ in their interaction trajectories
with MathPal, and whether distinct profiles of
interaction can be identified across the classroom.
Understanding these profiles may help educators
and designers develop more adaptive Al systems
that tailor scaffolding strategies to students’
unique learning needs and inquiry styles, which
lead to the following two research questions:

RQ1: What are the patterns of inquiry and
scaffolding interactions between students and
MathPal during math problem-solving activities?

RQ2: What distinct student interaction profiles
with MathPal emerge during math problem-
solving, and how do these profiles reflect
differences in learning behaviors?

2 Methods

2.1 Participants

Participants were 48 ninth-grade students enrolled
in three Algebra I classes at an urban high school
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located in the northeastern United States. The
school serves a diverse student population with
approximately 50% of students identified as
economically disadvantaged. All participants
were taught by the same high school mathematics
teacher who has 12 years of teaching experience.
Teacher consent, parental permission, and student
assent were obtained in accordance with
Institutional Review Board (IRB) approval prior
to the commencement of the study and data
collection.

2.2 Math AI Agent--MathPal

MathPal is an Al-powered conversational agent
designed to serve as an interactive math learning
partner for high school students. It supports
students in understanding mathematical concepts
and offers strategies and hints to guide them in
solving practice problems. Informed by growth
mindset concept (Dweck, 2006), which is the
belief that abilities can be developed through
effort, effective strategies, and constructive
feedback, MathPal encourages students to persist
through challenges and view mistakes as
opportunities for learning.

MathPal can be integrated seamlessly with
digital math learning platforms, providing
students with real-time, responsive guidance in a
conversational and supportive tone. Its design
promotes resilience and confidence in problem-
solving by offering personalized support aligned
with students’ learning needs. As shown in Figure
1, MathPal can read the screen and assist students
in solving problems by providing strategies or
hints without revealing the answer, using growth
mindset—aligned language to facilitate problem-
solving process.
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Figure 1: MathPal Conversation Interface

Additionally, MathPal promotes focus and
motivation by redirecting off-topic discussions
toward relevant mathematical content, linking
students’ personal interests to core math concepts.
When students interact with MathPal, whether to
ask about algebraic concepts or problem-solving
steps and strategies, their inputs are interpreted by
the system, routed through reliable back-end



computational engines, and reformulated into
accessible and student-friendly language.

2.3 Research Contexts

MathPal was integrated into the 9th-grade
Algebra I curriculum and embedded within a
virtual mathematics learning program. During
daily math lessons, following the teacher's
instruction, students transitioned to the virtual
program for individual practice, typically
engaging in math problem sets for approximately
15-20 minutes per class session. As students
worked through various problem-solving tasks,
they interacted with MathPal to receive guidance
and tailored feedback. The types of tasks and
instructional content supported by MathPal were
aligned with daily instructional concepts such as
solving linear function problems.

At the beginning of the semester, teachers
provided an on-boarding session to students on
installing and using MathPal, including
demonstrations of its features and functions.
Students then utilized MathPal throughout the
semester (14 weeks) as a regular component of
their mathematics learning experience (see Figure
2). During independent practice, teachers
circulated around the classroom to address
students’ questions, whether related to the use of
MathPal or the mathematical content itself. This
support ensured that students remained engaged
and could navigate the problem-solving tasks
effectively.

2.4 Data Analysis

Qualitative analysis was used to examine the
conversational exchanges between students and
MathPal during problem-solving activities. A total
of 1,214 conversational threads were generated by
the 48 participating students.

To better understand how students interact with
MathPal during problem-solving activities, an

inductive approach to qualitative analysis was
used. Because engaging with an Al agent to solve
problems collaboratively is a first-time experience
for many students, the goal was to allow inquiry
patterns to emerge directly from the data.
Accordingly, open coding was first applied to
identify recurring concepts and types of student
input, followed by axial coding to organize these
codes into broader themes and subthemes
representing students’ engagement with the tool
(Strauss & Corbin, 1998). The researchers
independently coded the first 300 threads of the
data and developed separate codebooks. Through
a process of comparison, contrast, and
triangulation, they reconciled differences and
collaboratively refined the codes into a single,
unified codebook. This final codebook was then
applied to complete the coding of the full dataset.
Table 1 presents the codebook used to categorize
students’ inquiry types during problem-solving
interactions. These were classified into five

categories: solution-focused, conceptual,
computational, formula/procedural, and
clarification-seeking inquiries.
Theme Definition Example
Clarifica- Students ask for | Can you go
tion repetition, through the
Seeking elaboration, or steps again?
clearer
explanation of
problem-solving
process.
Computa- Students inquire | I need to
tional about performing | calculate
Inquiry a specific cos(m/4)
mathematical without a
computation. calculator.
Concep- Students seek to | What exactly
tual Inquiry | understand the is a derivative.
underlying
meaning behind
a mathematical
concept.
Formula/ Students ask for | Can you
Procedural | a formula, rule, provide the
Inquiry or step-by-step steps for
procedure for computing the
solving a determinant.
problem.
Solution- Students directly | Can you help
Focused request help in me solve this
Inquiry solving a specific | equation
problem.

Table 1. Codebook for Student Inquiry Types




To better understand how MathPal supported
students in progressing through the problem-
solving process, a deductive coding analysis
(Fereday & Muir-Cochrane, 2006) was conducted
on the Al-generated responses to student
inquiries. The coding scheme was adapted from
the STEM scaffolding types proposed by Belland
(2017), which enables researchers to capture
diverse forms of cognitive, metacognitive, and
strategic support essential to inquiry-based
learning, thus aligns well with the problem-
solving context of this study. Researchers
followed a similar coding and triangulation
process as used in the student data analysis,
collaboratively refining and consolidating the

codebook through consensus (see Table 2).

Theme Definition Example
Conceptual | Provides A linear
Scaffolding | explanations or | function is a
definitions to function
help students that. ..
understand
underlying
mathematical
concepts.
Manage- Help students Let's focus on
ment stay on task or solving the
Scaffolding | maintain focus | math problem!
during the
problem-solving
process.
Metacog- Encourages Let’s go
nitive students to through this
Scaffolding | reflect on their again... Ve-
thinking, or rify these to
self-monitor ensure
their problem- correctness.
solving process. | Let me know
how that
works out.
Motivation- | Offers I'll provide
al encourage-ment | you with hints
Scaffolding | or support to and guidance.
sustain students’ | Let's work
confidence or together on
engagement in some math
the learning problems!
task.
Strategic Guides students | To solve the
Scaffolding | through a step- | problem
by-step process | of......., follow
or strategy to these
solve a problem | steps......
effectively.

Table 2. Codebook for MathPal’s Scaffolding Types
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After completing the coding of both students’
and MathPal’s data based on the established
codebook, data visualization and lag sequential
analysis were conducted to address the first
research question, which focused on the temporal
patterns of inquiry types during problem-solving
interactions.

To address the second research question,
Epistemic Network Analysis (ENA; Shaffer,
2017) was employed to examine the co-
occurrence and structural patterns of student—Al
interactions. ENA utilizes a sliding window (also
referred to as a “stanza”) to analyze interaction
data, enabling the identification of codes that co-
occur frequently within a defined context. In this
study, the unit of analysis for ENA was the
individual student, with each student’s interaction
history with the Al defined as “conversation”. For
this analysis, the stanza size was set to seven, a
standard parameter commonly used for modeling
conversational data.

Following the initial ENA modeling, K-means
clustering was applied to uncover distinct patterns
of student-Al interaction. Using students’ network
projections on the ENA plane, the K-means
algorithm was employed to determine the optimal
number of clusters, ensuring that within-cluster
similarity was maximized while between-cluster
similarity was minimized. Subsequently, the
clustering results were integrated into the ENA
modeling to visualize and compare student-Al
interactions across the identified clusters.

3 Results

3.1 RQI1: Inquiry and Scaffolding Patterns

During Problem-Solving

To gain a comprehensive understanding of the
general interaction patterns between students and
MathPal, pie charts were created to illustrate the
distribution of student inquiry types and
MathPal’s scaffolding strategies. Figure 3 reveals
that Solution-Focused Inquiry accounted for the
largest proportion of student utterances (42.29%),
followed by Computational Inquiry (20.48%).
This indicates that students primarily engaged
with MathPal when tackling multi-step tasks or
performing calculations. For example, a student
asked, “how to do this problem step by step,”
which reflects a focus on procedural progression
rather than conceptual exploration.
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Figure 3: Student Inquiry Type Distribution

On MathPal’s side (Figure 4), Strategic
Scaffolding was the most frequently applied
support type (52.88%), emphasizing the system’s
tendency to guide students through structured
problem-solving steps. Together, the pie charts
suggest that student-Al interactions were heavily
oriented toward procedural assistance, with
MathPal primarily functioning as a step-by-step
guide rather than a conceptual tutor. This raises
important  pedagogical  considerations  for
designing Al that not only supports task
completion but also fosters deeper mathematical
understanding.

Conceptual

Scaffolding,
17.79%

Strategic
Scaffolding,

0,
52.88% Management

Scaffolding,
14.66%

\ Metacogniti

ve
Scaffolding,
5.93%

Motivation
Scaffolding,
8.73%

Figure 4: MathPal Scaffolding Type Distribution.

To further illuminate how specific types of
student  inquiries  elicited  corresponding
scaffolding from MathPal, a Sankey diagram was
constructed to visualize the directional flow of
interactions between learner input and MathPal-
generated scaffolding. This diagram captures the
distribution of coded interactions across 454
episodes, illustrating how the nature of student
queries on the left influenced the form of
scaffolding provided on the right.

As indicated in figure 5, the dominant flow in
the diagram stems from Solution-Focused Inquiry
(n 192), which overwhelmingly leads into
Strategic Scaffolding (n = 300). This directional
flow demonstrates that when students present
complex problem-solving questions, such as those
requiring  multi-step  reasoning, = MathPal
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responded primarily with strategic procedural
guidance. A typical case illustrates this flow: a
student asked, “how to do this problem step by
step”, which was answered with: “To solve the
equation -8d + 11d = 9d, follow these steps...”.
Such flows underscore the alignment between
problem complexity and strategic decomposition
in Al support, suggesting that MathPal's
scaffolding logic is tightly calibrated to respond to
problem-solving requests.

Solution-Focused Inguiry

192

Strategic Scaffolding

300

Computational Inquiry

93

Manugement Sealoldis

Formula/Procedure Ingui

. Motivation Scaffolding

M Metacognitive Scaftold
32

Conesptual Inquiry Conceptual Scatfolding
agl 95

Figure 5: Student Inquiry Types and Corresponding
MathPal Scaffolding Support

Computational Inquiries (n 93) also
predominantly  flowed toward  Strategic
Scaffolding. The directional thickness of this
stream in the Sankey diagram reflects frequent Al
responses aimed at operational clarity. For
example, queries like “put 10, 20,15, 30... in a
number line” prompted responses emphasizing
ordered thinking, reinforcing the trend that
MathPal prioritizes task structure and planning in
response to numerical and operational queries.

Another substantial pathway leads from
Clarification Seeking (n = 86) and Conceptual
Inquiry (7 = 49) into Conceptual Scaffolding (n =
95). These flows signify situations where learners
express epistemic uncertainty, often about
definitions, categories, or relational
understanding, and the Al responded with
conceptual elaboration. This pattern affirms that
conceptual depth on the part of the student
correlates with knowledge-level scaffolding from
MathPal, further evidencing a pedagogically
aligned flow system.

In contrast, weaker flows were observed
toward Management (n = 12), Motivational (n =
15), and Metacognitive Scaffolding (n = 32).
These less prominent flows appeared thin across
all inquiry types, indicating either low incidence
of such student needs or limited detection and
activation by MathPal. Notably, even from
Solution-Focused Inquiries, which is the most
dominant source, only a small number of
instances flowed into these support categories.



The visual marginality of these flows in the
Sankey chart, particularly those leading to
motivational, management, and metacognitive
scaffolding, points to instructional dynamics
where motivational and self-regulatory supports
are engaged less frequently in Al-student
interactions.

In summary, the Sankey diagram functionally
maps the dialogic flow from student-generated
inquiries to Al-generated scaffolds, offering a
visual representation of how MathPal interprets
and responds to varying learner needs. The flow
patterns reveal a predominant reliance on strategic
and conceptual scaffolding, primarily triggered by
Solution-Focused and Clarification-Seeking
inquiries, respectively. The directionality and
volume of these flows underscore the Al’s
responsiveness to cognitive and procedural
challenges. From an instructional perspective,
these patterns invite further consideration of how
scaffolding models might be expanded to
proactively  integrate =~ motivational  and
metacognitive supports, particularly in contexts
where student engagement, persistence, or
reflection could enhance learning outcomes.

While the Sankey diagram visualizes aggregate
inquiry—scaffolding flows, it does not test whether
specific patterns are statistically significant. To
investigate these patterns systematically, we
conducted a Lag Sequential Analysis to examine
whether specific types of student inquiries
consistently elicited particular Al scaffolds in a
statistically meaningful way. This analysis
examined the extent to which specific student
inquiry types were predictably followed by
particular MathPal scaffolding beyond what
would occur by chance. By statistically modeling
these turn-by-turn sequences, we were able to
identify significant dialogic contingencies that
provide deeper insight into the dynamics of
student—Al interaction during problem-solving.

The results from lag-sequential analysis
revealed statistically significant patterns of
interaction between students and MathPal during
high school mathematics problem-solving
activities. As summarized in Table 3, each student
inquiry type was followed by distinct forms of Al
scaffolding at rates significantly higher than
expected by chance (z > 1.96, p < .05). For
example, Problem-Solving Inquiries were most
frequently followed by Strategic Scaffolding (z =
10.54) and Management Scaffolding (z = 10.48),
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suggesting that MathPal responds to action-
oriented problem-solving attempts by providing
procedural guidance and task organization
support—both of which are essential for success
in secondary-level mathematics.

Inquiries focused on formulas and procedures
led to similarly strong responses, particularly
Strategic  Scaffolding (z = 9.38) and
Metacognitive Scaffolding (z = 6.71), reflecting
MathPal’s tendency to blend step-by-step
guidance with prompts for reflection. Conceptual
Inquiries elicited Conceptual Scaffolding (z =
5.93), indicating that MathPal adjusts to
cognitively deeper questions with explanation-
focused support. Additionally, Clarification-
Seeking moves triggered a broad range of
responses, including Conceptual (z = 4.40),
Metacognitive (z = 4.05), Strategic (z =4.00), and
Motivational Scaffolding (z = 3.77), showing that
the Al detects confusion as an opportunity for
multi-dimensional support.

Overall, the results highlight MathPal’s
capacity to align its scaffolding strategies with the
nature of student input, supporting the notion of
contingent scaffolding in Al-driven learning
environments, particularly within high school
mathematics problem-solving contexts.

Student Inquiry MathPal Z-Score

Scaffolding
Solution-Focused | Strategic 10.54
Inquiry Scaffolding
Solution-Focused | Management | 10.48
Inquiry Scaffolding
Formula/Procedure | Strategic 9.38
Inquiry Scaffolding
Formula/Procedure | Metacognitive | 6.71
Inquiry Scaffolding
Conceptual Inquiry | Conceptual 593

Scaffolding
Computational Strategic 4.99
Inquiry Scaffolding
Computational Metacognitive | 4.62
Inquiry Scaffolding
Computational Motivation 4.44
Inquiry Scaffolding
Clarification Conceptual 4.40
Seeking Scaffolding
Clarification Metacognitive | 4.05
Seeking Scaffolding
Clarification Strategic 4.00
Seeking Scaffolding
Clarification Motivation 3.77
Seeking Scaffolding




Table 3: Significant Transitions Between Student
Inquiry Types and MathPal Scaffolding

3.2 RQ2: Student-Al Collaborative

Problem-Solving Profiles

While lag sequential analysis uncovered
statistically ~ significant turn-level patterns
between inquiry types and scaffolding responses,
it does not reveal how these interaction patterns
accumulate across learners. To address this, we
employed Epistemic Network Analysis (ENA) to
model individual students' inquiry—scaffold co-
occurrence structures and identify latent profiles
of interaction. ENA diagrams were developed to
better understand students-MathPal collaboration
patterns during problem-solving activities. As
shown in Figure 6, the dots represent the
projections of individual student networks , while
the square markers indicate the average
projections of students within each cluster. The
spatial distances within the ENA diagram reflect
differences in network structures, where closer
dots indicate more similar interaction patterns,
and greater distances signify more distinct
structures. ENA analysis revealed four distinct
interaction clusters, corresponding to different
patterns of student-MathPal interactions.

C’luslcréiy .

4Cluster 1

'y -
e )
Cluster 2

Cluster 3*
. | 1

Figure 6: Distributions of four clusters of student-Al
interactions
The specific connection patterns within each
cluster, visualized in Figure 7, further illustrate
these distinctions. In Cluster 1, the strongest
connection was observed between computational
inquiry and strategic scaffolding. Meanwhile,
there were several moderate connections such as
clarification seeking-strategic scaffolding and
solution-focused inquiry-strategic scaffolding.
Comparatively, the most prominent connection in
Cluster 2 was between solution-focused inquiry
and strategic scaffolding, suggesting a goal-driven
interaction pattern. In contrast, Cluster 3 exhibited
more balanced connections overall, with a slightly
stronger connection between strategic scaffolding
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and motivation scaffolding. Lastly, Cluster 4
featured prominent connections among solution-
focused inquiry, computational inquiry, and
strategic scaffolding, as well as a moderate
connection between solution-focused inquiry and
conceptual scaffolding, suggesting a blend of
conceptual understanding and problem-solving
strategies.

Each cluster reflects an integrated pattern of
how students regulate their interactions with
MathPal and their learning. By identifying these
clusters (and more importantly their specific
configurations), we can provide students with
personalized support and also identify students
who are not engaging with MathPal effectively in

Problem-solving activities.
Cluster 1

Cluster 2

Clarification
Scching
L]
Solution-Focused
Tuquiry
e

Conceptual

1 Formula/Procedure
Tuquiry

Strategic
Scallolding
Metacognitive Maotivation
Scaffolding Scaffolding
L

Stralegic
Scaffolding

\Imn‘mlm\.
Scaffolding

Cluster 3 Cluster4  Claification
Seeking

Cla ation

# Computational
Inquiry

Solution-Focused.
Inquiry

c
® scaffolding
Conceptual
Inquiry gy

| Cénceptual
Scaffolding

« Formula/Procedure
Inquiry

A Strategic
Suu].loklmg‘\’ Scaffolding

Motivatioft
Scaffolding

Metacogn
Scalfold

Figure 7: Four types of student-Al interaction
patterns

4 Discussion & Implications

This study examined how students interacted
with MathPal, an Al-based scaffolding tool,
during math problem-solving. Two core findings
emerged: (1) students followed consistent
inquiry—scaffolding  patterns centered on
procedural support, and (2) distinct student—Al
collaborative problem-solving profiles reflected
varying learning behaviors. These findings extend
current research on Al tutoring systems (Holstein
et al, 2019) and offer new insight into how
generative Al can be adapted for more
personalized, effective learning support in math
problem-solving contexts.

4.1 Personalizing Al Scaffolding Based on

Student Inquiry

Most student inquiries were solution-focused
or computational, prompting primarily strategic



scaffolding from MathPal. While this guided
students through procedural tasks, it offered less
conceptual or motivational support. This
imbalance suggests Al agents should better detect
moments of confusion or disengagement to
deliver metacognitive or motivational scaffolds.

The findings align with the idea of contingent
scaffolding, which emphasizes the need for
support to be responsive to students’ evolving
cognitive and affective states (Van de Pol et al.,
2010). Enhancing Al systems with adaptive
feedback mechanisms that dynamically shift
between strategic, conceptual, and motivational
scaffolding may promote deeper learning by
moving students beyond surface-level task
completion toward the development of enduring
mathematical understanding and problem-solving
skills (Aleven et al., 2016).

4.2 Personalizing Support

Interaction Profiles

Through

The distinct interaction profiles offer actionable
insights for designing more personalized and
effective Al learning support. By recognizing
students’ habitual inquiry patterns, Al systems can
adapt their scaffolding strategies to align with
individual cognitive and motivational needs. For
instance, students who primarily engage in
procedural or solution-focused exchanges may
require targeted prompts that promote self-
explanation,  conceptual  elaboration, or
metacognitive  reflection (Belland, 2017).
Conversely, students exhibiting more exploratory
or conceptual dialogue might benefit from
strategic scaffolds that help organize their
thinking and support knowledge gaining. Such
adaptive tailoring not only supports differentiated
learning trajectories but also enables educators to
detect patterns of disengagement or superficial
inquiry and intervene to promote deeper
engagement and sustained learning growth (Roll
& Winne, 2015).

4.3 Theoretical and

Perspectives

Methodological

From a theoretical lens, the findings align with
socio-cognitive perspectives that view learning as
a co-constructed process. In the context of this
study, students and the Al agent collaboratively
constructed knowledge to complete problem-
solving tasks through dialogic interaction, learner-
driven inquiry, and scaffolded support (Mercer &
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Howe, 2012). The observed variation in student—
Al interaction patterns highlight the importance of
context-sensitive scaffolding, reinforcing prior
work that emphasizes the dynamic and situated
nature of collaborative learning with intelligent
tools (Sawyer, 2014). These profiles not only
reflect variation in students' inquiry behaviors but
may also signal different Al scaffolding patterns
in math problem-solving contexts.

Methodologically, this study demonstrates the
value of combining qualitative coding with lag
sequential analysis and ENA to capture both the
structure and flow of human—Al interaction. ENA,
in particular, proved effective in visualizing co-
occurring patterns that distinguish learner
engagement types. The use of clustering to define
emergent profiles further enhances ENA’s utility
in learning analytics, offering a powerful lens for
exploring personalized learning trajectories in
real-world settings.

5 Conclusion

This study explored how high school students
interact with a math Al agent, MathPal, during
problem-solving activities. Findings revealed
consistent patterns of inquiry and scaffolding,
with students frequently seeking procedural help
and the Al responding primarily with strategic
guidance. Through ENA, four distinct interaction
profiles emerged, reflecting differences in how
students engage with Al support. These results
highlight the need for adaptive Al scaffolding that
responds not only to task demands but also to
learners’ conceptual and motivational needs. By
leveraging interaction patterns, educators and
designers can create more personalized,
responsive Al systems that better support
students’ math learning in high school classrooms.
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