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Abstract 

This study investigates inquiry and 

scaffolding patterns between students and 

MathPal, a math AI agent, during 

problem-solving tasks. Using qualitative 

coding, lag sequential analysis, and 

Epistemic Network Analysis, the study 

identifies distinct interaction profiles, 

revealing how personalized AI feedback 

shapes student learning behaviors and 

inquiry dynamics in mathematics 

problem-solving activities. 

1 Introduction & Background 

As generative artificial intelligence (GAI) 

becomes increasingly integrated into K–12 

settings, educators and researchers are starting to 

explore how GAI tools can meaningfully support 

student learning through interactive, adaptive 

assistant (Lang et al., 2025). Recent studies have 

shown that conversational AI tools can act as 

learning companions, offering personalized 

scaffolding and guiding students through complex 

tasks in real time, particularly in K–12 contexts 

(Kim & Kwon, 2025; Li et al., 2024). In 

mathematics education, where students often 

struggle with abstract reasoning and procedural 

complexity in the subject such as algebra, AI 

agents have the potential to provide personalized, 

real-time feedback that bridges the gap between 

instruction and independent inquiry. 

The idea of instructional scaffolding has long 

emphasized the importance of timely support that 

is tailored to the learner’s evolving needs 

(Belland, 2017). In AI-integrated learning 

environments, scaffolding can take the form of 

prompts, hints, motivational encouragement, or 

step-by-step guidance, each playing a crucial role 

in sustaining engagement and deepening 

understanding especially as students are solving 

math problems independently (Rittle-Johnson & 

Koedinger, 2005; Tay & Toh, 2023). Similarly, 

inquiry-based learning frameworks have 

highlighted how students' questioning behaviors, 

exploration strategies, and reflection processes 

contribute to meaningful learning (Artigue & 

Blomhøj, 2013). Yet, less is known about how 

these two dynamics—inquiry and scaffolding—

manifest when students interact with AI agents in 

real-time problem-solving contexts. 

This gap calls for a closer examination of how 

AI-mediated interactions shape learning processes 

in mathematics, particularly how students and ai 

agents collaboratively navigate complex problem-

solving tasks. While previous studies have 

demonstrated the effectiveness of intelligent 

tutoring systems in enhancing performance and 

engagement (Niño-Rojas et al., 2024; Zhang & 

Jia, 2017), relatively few have examined the 

dialogic and adaptive qualities of these 

interactions—particularly from the dual 

perspectives of student-initiated inquiry and AI-
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generated scaffolding. Moreover, although some 

work has explored AI's responsiveness to student 

input (Atherton et al., 2024; Kim et al., 2025), 

there remains a lack of fine-grained analysis on 

how specific types of student inquiries elicit 

particular forms of scaffolding, and how these 

patterns vary across learners. 

To address this gap, this study examines how 

high school students interact with MathPal 

(MathPal, 2023), an AI conversational agent 

designed to provide personalized support during 

math problem-solving tasks. Grounded in growth 

mindset and dialogic learning principles, MathPal 

engages students through structured yet adaptive 

conversation, offering hints, strategies, and 

encouragement as they work through algebraic 

problem sets. The integration of MathPal into real 

classroom settings offers a rich opportunity to 

explore the nature of AI-mediated learning 

interactions and to better understand how students 

navigate mathematical problem-solving tasks 

colligatively with an AI agent. 

This research is guided by two key aims. First, 

researchers seek to analyze the patterns of inquiry 

and scaffolding interactions that emerge during 

student–MathPal problem-solving conversations. 

By classifying the types of questions students pose 

and the forms of support provided by AI, 

researchers aim to identify recurring patterns and 

interactional flows that characterize the learning 

dialogue. Second, this study intends to investigate 

how students differ in their interaction trajectories 

with MathPal, and whether distinct profiles of 

interaction can be identified across the classroom. 

Understanding these profiles may help educators 

and designers develop more adaptive AI systems 

that tailor scaffolding strategies to students’ 

unique learning needs and inquiry styles, which 

lead to the following two research questions: 

RQ1: What are the patterns of inquiry and 

scaffolding interactions between students and 

MathPal during math problem-solving activities? 

RQ2: What distinct student interaction profiles 

with MathPal emerge during math problem-

solving, and how do these profiles reflect 

differences in learning behaviors? 

2 Methods  

2.1 Participants 

Participants were 48 ninth-grade students enrolled 

in three Algebra I classes at an urban high school 

located in the northeastern United States. The 

school serves a diverse student population with 

approximately 50% of students identified as 

economically disadvantaged. All participants 

were taught by the same high school mathematics 

teacher who has 12 years of teaching experience. 

Teacher consent, parental permission, and student 

assent were obtained in accordance with 

Institutional Review Board (IRB) approval prior 

to the commencement of the study and data 

collection.  

2.2 Math AI Agent--MathPal 

MathPal is an AI-powered conversational agent 

designed to serve as an interactive math learning 

partner for high school students. It supports 

students in understanding mathematical concepts 

and offers strategies and hints to guide them in 

solving practice problems. Informed by growth 

mindset concept (Dweck, 2006), which is the 

belief that abilities can be developed through 

effort, effective strategies, and constructive 

feedback, MathPal encourages students to persist 

through challenges and view mistakes as 

opportunities for learning. 

MathPal can be integrated seamlessly with 

digital math learning platforms, providing 

students with real-time, responsive guidance in a 

conversational and supportive tone. Its design 

promotes resilience and confidence in problem-

solving by offering personalized support aligned 

with students’ learning needs. As shown in Figure 

1, MathPal can read the screen and assist students 

in solving problems by providing strategies or 

hints without revealing the answer, using growth 

mindset–aligned language to facilitate problem-

solving process.  

 
Figure 1: MathPal Conversation Interface 

Additionally, MathPal promotes focus and 

motivation by redirecting off-topic discussions 

toward relevant mathematical content, linking 

students’ personal interests to core math concepts. 

When students interact with MathPal, whether to 

ask about algebraic concepts or problem-solving 

steps and strategies, their inputs are interpreted by 

the system, routed through reliable back-end 
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computational engines, and reformulated into 

accessible and student-friendly language. 

2.3 Research Contexts  

MathPal was integrated into the 9th-grade 

Algebra I curriculum and embedded within a 

virtual mathematics learning program. During 

daily math lessons, following the teacher's 

instruction, students transitioned to the virtual 

program for individual practice, typically 

engaging in math problem sets for approximately 

15–20 minutes per class session. As students 

worked through various problem-solving tasks, 

they interacted with MathPal to receive guidance 

and tailored feedback. The types of tasks and 

instructional content supported by MathPal were 

aligned with daily instructional concepts such as 

solving linear function problems. 

At the beginning of the semester, teachers 

provided an on-boarding session to students on 

installing and using MathPal, including 

demonstrations of its features and functions. 

Students then utilized MathPal throughout the 

semester (14 weeks) as a regular component of 

their mathematics learning experience  (see Figure 

2). During independent practice, teachers 

circulated around the classroom to address 

students’ questions, whether related to the use of 

MathPal or the mathematical content itself. This 

support ensured that students remained engaged 

and could navigate the problem-solving tasks 

effectively. 

 
Figure 2. Daily Math Lesson with MathPal 

2.4 Data Analysis  

Qualitative analysis was used to examine the 

conversational exchanges between students and 

MathPal during problem-solving activities. A total 

of 1,214 conversational threads were generated by 

the 48 participating students.  

To better understand how students interact with 

MathPal during problem-solving activities, an 

inductive approach to qualitative analysis was 

used. Because engaging with an AI agent to solve 

problems collaboratively is a first-time experience 

for many students, the goal was to allow inquiry 

patterns to emerge directly from the data. 

Accordingly, open coding was first applied to 

identify recurring concepts and types of student 

input, followed by axial coding to organize these 

codes into broader themes and subthemes 

representing students’ engagement with the tool 

(Strauss & Corbin, 1998). The researchers 

independently coded the first 300 threads of the 

data and developed separate codebooks. Through 

a process of comparison, contrast, and 

triangulation, they reconciled differences and 

collaboratively refined the codes into a single, 

unified codebook. This final codebook was then 

applied to complete the coding of the full dataset. 

Table 1 presents the codebook used to categorize 

students’ inquiry types during problem-solving 

interactions. These were classified into five 

categories: solution-focused, conceptual, 

computational, formula/procedural, and 

clarification-seeking inquiries.  

Theme Definition Example 

Clarifica-

tion 

Seeking 

Students ask for 

repetition, 

elaboration, or 

clearer 

explanation of 

problem-solving 

process. 

Can you go 

through the 

steps again? 

Computa-

tional 

Inquiry 

Students inquire 

about performing 

a specific 

mathematical 

computation. 

I need to 

calculate 

cos(π/4) 

without a 

calculator. 

Concep-

tual Inquiry 

Students seek to 

understand the 

underlying 

meaning behind 

a mathematical 

concept. 

What exactly 

is a derivative. 

Formula/ 

Procedural 

Inquiry 

Students ask for 

a formula, rule, 

or step-by-step 

procedure for 

solving a 

problem. 

Can you 

provide the 

steps for 

computing the 

determinant. 

Solution-

Focused 

Inquiry 

Students directly 

request help in 

solving a specific 

problem.  

Can you help 

me solve this 

equation 

Table 1. Codebook for Student Inquiry Types 
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To better understand how MathPal supported 

students in progressing through the problem-

solving process, a deductive coding analysis 

(Fereday & Muir-Cochrane, 2006) was conducted 

on the AI-generated responses to student 

inquiries. The coding scheme was adapted from 

the STEM scaffolding types proposed by Belland 

(2017), which enables researchers to capture 

diverse forms of cognitive, metacognitive, and 

strategic support essential to inquiry-based 

learning, thus aligns well with the problem-

solving context of this study. Researchers 

followed a similar coding and triangulation 

process as used in the student data analysis, 

collaboratively refining and consolidating the 

codebook through consensus (see Table 2). 

Theme Definition Example 

Conceptual 

Scaffolding 

Provides 

explanations or 

definitions to 

help students 

understand 

underlying 

mathematical 

concepts. 

A linear 

function is a 

function 

that… 

Manage-

ment 

Scaffolding 

Help students 

stay on task or 

maintain focus 

during the 

problem-solving 

process. 

Let's focus on 

solving the 

math problem! 

Metacog-

nitive 

Scaffolding 

Encourages 

students to 

reflect on their 

thinking, or 

self-monitor 

their problem-

solving process. 

Let’s go 

through this 

again…Ve-

rify these to 

ensure 

correctness. 

Let me know 

how that 

works out. 

Motivation-

al 

Scaffolding 

Offers 

encourage-ment 

or support to 

sustain students’ 

confidence or 

engagement in 

the learning 

task. 

I'll provide 

you with hints 

and guidance. 

Let's work 

together on 

some math 

problems! 

Strategic 

Scaffolding 

Guides students 

through a step-

by-step process 

or strategy to 

solve a problem 

effectively. 

To solve the 

problem 

of…...., follow 

these 

steps…… 

Table 2. Codebook for MathPal’s Scaffolding Types 

After completing the coding of both students’ 

and MathPal’s data based on the established 

codebook, data visualization and lag sequential 

analysis were conducted to address the first 

research question, which focused on the temporal 

patterns of inquiry types during problem-solving 

interactions. 

To address the second research question, 

Epistemic Network Analysis (ENA; Shaffer, 

2017) was employed to examine the co-

occurrence and structural patterns of student–AI 

interactions. ENA utilizes a sliding window (also 

referred to as a “stanza”) to analyze interaction 

data, enabling the identification of codes that co-

occur frequently within a defined context. In this 

study, the unit of analysis for ENA was the 

individual student, with each student’s interaction 

history with the AI defined as “conversation”. For 

this analysis, the stanza size was set to seven, a 

standard parameter commonly used for modeling 

conversational data. 

Following the initial ENA modeling, K-means 

clustering was applied to uncover distinct patterns 

of student-AI interaction. Using students’ network 

projections on the ENA plane, the K-means 

algorithm was employed to determine the optimal 

number of clusters, ensuring that within-cluster 

similarity was maximized while between-cluster 

similarity was minimized. Subsequently, the 

clustering results were integrated into the ENA 

modeling to visualize and compare student-AI 

interactions across the identified clusters. 

3 Results  

3.1 RQ1: Inquiry and Scaffolding Patterns 

During Problem-Solving 

To gain a comprehensive understanding of the 

general interaction patterns between students and 

MathPal, pie charts were created to illustrate the 

distribution of student inquiry types and 

MathPal’s scaffolding strategies. Figure 3 reveals 

that Solution-Focused Inquiry accounted for the 

largest proportion of student utterances (42.29%), 

followed by Computational Inquiry (20.48%). 

This indicates that students primarily engaged 

with MathPal when tackling multi-step tasks or 

performing calculations. For example, a student 

asked, “how to do this problem step by step,” 

which reflects a focus on procedural progression 

rather than conceptual exploration. 
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Figure 3: Student Inquiry Type Distribution 

On MathPal’s side (Figure 4), Strategic 

Scaffolding was the most frequently applied 

support type (52.88%), emphasizing the system’s 

tendency to guide students through structured 

problem-solving steps. Together, the pie charts 

suggest that student-AI interactions were heavily 

oriented toward procedural assistance, with 

MathPal primarily functioning as a step-by-step 

guide rather than a conceptual tutor. This raises 

important pedagogical considerations for 

designing AI that not only supports task 

completion but also fosters deeper mathematical 

understanding. 

 
Figure 4: MathPal Scaffolding Type Distribution. 

To further illuminate how specific types of 

student inquiries elicited corresponding 

scaffolding from MathPal, a Sankey diagram was 

constructed to visualize the directional flow of 

interactions between learner input and MathPal-

generated scaffolding. This diagram captures the 

distribution of coded interactions across 454 

episodes, illustrating how the nature of student 

queries on the left influenced the form of 

scaffolding provided on the right. 

As indicated in figure 5, the dominant flow in 

the diagram stems from Solution-Focused Inquiry 

(n = 192), which overwhelmingly leads into 

Strategic Scaffolding (n = 300). This directional 

flow demonstrates that when students present 

complex problem-solving questions, such as those 

requiring multi-step reasoning, MathPal 

responded primarily with strategic procedural 

guidance. A typical case illustrates this flow: a 

student asked, “how to do this problem step by 

step”, which was answered with: “To solve the 

equation -8d + 11d = 9d, follow these steps...”. 

Such flows underscore the alignment between 

problem complexity and strategic decomposition 

in AI support, suggesting that MathPal's 

scaffolding logic is tightly calibrated to respond to 

problem-solving requests. 

 
Figure 5: Student Inquiry Types and Corresponding 

MathPal Scaffolding Support 

Computational Inquiries (n = 93) also 

predominantly flowed toward Strategic 

Scaffolding. The directional thickness of this 

stream in the Sankey diagram reflects frequent AI 

responses aimed at operational clarity. For 

example, queries like “put 10, 20,15, 30... in a 

number line” prompted responses emphasizing 

ordered thinking, reinforcing the trend that 

MathPal prioritizes task structure and planning in 

response to numerical and operational queries. 

Another substantial pathway leads from 

Clarification Seeking (n = 86) and Conceptual 

Inquiry (n = 49) into Conceptual Scaffolding (n = 

95). These flows signify situations where learners 

express epistemic uncertainty, often about 

definitions, categories, or relational 

understanding, and the AI responded with 

conceptual elaboration. This pattern affirms that 

conceptual depth on the part of the student 

correlates with knowledge-level scaffolding from 

MathPal, further evidencing a pedagogically 

aligned flow system. 

In contrast, weaker flows were observed 

toward Management (n = 12), Motivational (n = 

15), and Metacognitive Scaffolding (n = 32). 

These less prominent flows appeared thin across 

all inquiry types, indicating either low incidence 

of such student needs or limited detection and 

activation by MathPal. Notably, even from 

Solution-Focused Inquiries, which is the most 

dominant source, only a small number of 

instances flowed into these support categories. 

Clarification 

Seeking, 18.94%

Computat

ional 

Inquiry, 

20.48%

Conceptual 

Inquiry, 10.79%

Formula/Proce

dure Inquiry, 

7.49%

Solution-Focused 

Inquiry, 42.29%

Conceptual 

Scaffolding, 

17.79%

Management 

Scaffolding, 

14.66%

Metacogniti

ve 

Scaffolding, 

5.93%

Motivation 

Scaffolding, 

8.73%

Strategic 

Scaffolding, 

52.88%

301



 

 
 

The visual marginality of these flows in the 

Sankey chart, particularly those leading to 

motivational, management, and metacognitive 

scaffolding, points to instructional dynamics 

where motivational and self-regulatory supports 

are engaged less frequently in AI-student 

interactions.  

In summary, the Sankey diagram functionally 

maps the dialogic flow from student-generated 

inquiries to AI-generated scaffolds, offering a 

visual representation of how MathPal interprets 

and responds to varying learner needs. The flow 

patterns reveal a predominant reliance on strategic 

and conceptual scaffolding, primarily triggered by 

Solution-Focused and Clarification-Seeking 

inquiries, respectively. The directionality and 

volume of these flows underscore the AI’s 

responsiveness to cognitive and procedural 

challenges. From an instructional perspective, 

these patterns invite further consideration of how 

scaffolding models might be expanded to 

proactively integrate motivational and 

metacognitive supports, particularly in contexts 

where student engagement, persistence, or 

reflection could enhance learning outcomes. 

While the Sankey diagram visualizes aggregate 

inquiry–scaffolding flows, it does not test whether 

specific patterns are statistically significant. To 

investigate these patterns systematically, we 

conducted a Lag Sequential Analysis to examine 

whether specific types of student inquiries 

consistently elicited particular AI scaffolds in a 

statistically meaningful way. This analysis 

examined the extent to which specific student 

inquiry types were predictably followed by 

particular MathPal scaffolding beyond what 

would occur by chance. By statistically modeling 

these turn-by-turn sequences, we were able to 

identify significant dialogic contingencies that 

provide deeper insight into the dynamics of 

student–AI interaction during problem-solving. 

The results from lag-sequential analysis 

revealed statistically significant patterns of 

interaction between students and MathPal during 

high school mathematics problem-solving 

activities. As summarized in Table 3, each student 

inquiry type was followed by distinct forms of AI 

scaffolding at rates significantly higher than 

expected by chance (z > 1.96, p < .05). For 

example, Problem-Solving Inquiries were most 

frequently followed by Strategic Scaffolding (z = 

10.54) and Management Scaffolding (z = 10.48), 

suggesting that MathPal responds to action-

oriented problem-solving attempts by providing 

procedural guidance and task organization 

support—both of which are essential for success 

in secondary-level mathematics. 

Inquiries focused on formulas and procedures 

led to similarly strong responses, particularly 

Strategic Scaffolding (z = 9.38) and 

Metacognitive Scaffolding (z = 6.71), reflecting 

MathPal’s tendency to blend step-by-step 

guidance with prompts for reflection. Conceptual 

Inquiries elicited Conceptual Scaffolding (z = 

5.93), indicating that MathPal adjusts to 

cognitively deeper questions with explanation-

focused support. Additionally, Clarification-

Seeking moves triggered a broad range of 

responses, including Conceptual (z = 4.40), 

Metacognitive (z = 4.05), Strategic (z = 4.00), and 

Motivational Scaffolding (z = 3.77), showing that 

the AI detects confusion as an opportunity for 

multi-dimensional support. 

Overall, the results highlight MathPal’s 

capacity to align its scaffolding strategies with the 

nature of student input, supporting the notion of 

contingent scaffolding in AI-driven learning 

environments, particularly within high school 

mathematics problem-solving contexts. 

Student Inquiry  MathPal 

Scaffolding  

Z-Score 

Solution-Focused 

Inquiry 

Strategic 

Scaffolding 

10.54 

Solution-Focused 

Inquiry 

Management 

Scaffolding 

10.48 

Formula/Procedure 

Inquiry 

Strategic 

Scaffolding 

9.38 

Formula/Procedure 

Inquiry 

Metacognitive 

Scaffolding 

6.71 

Conceptual Inquiry Conceptual 

Scaffolding 

5.93 

Computational 

Inquiry 

Strategic 

Scaffolding 

4.99 

Computational 

Inquiry 

Metacognitive 

Scaffolding 

4.62 

Computational 

Inquiry 

Motivation 

Scaffolding 

4.44 

Clarification 

Seeking 

Conceptual 

Scaffolding 

4.40 

Clarification 

Seeking 

Metacognitive 

Scaffolding 

4.05 

Clarification 

Seeking 

Strategic 

Scaffolding 

4.00 

Clarification 

Seeking 

Motivation 

Scaffolding 

3.77 
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Table 3:  Significant Transitions Between Student 

Inquiry Types and MathPal Scaffolding 

3.2 RQ2: Student-AI Collaborative 

Problem-Solving Profiles  

While lag sequential analysis uncovered 

statistically significant turn-level patterns 

between inquiry types and scaffolding responses, 

it does not reveal how these interaction patterns 

accumulate across learners. To address this, we 

employed Epistemic Network Analysis (ENA) to 

model individual students' inquiry–scaffold co-

occurrence structures and identify latent profiles 

of interaction. ENA diagrams were developed to 

better understand students-MathPal collaboration 

patterns during problem-solving activities. As 

shown in Figure 6, the dots represent the 

projections of individual student networks  , while 

the square markers indicate the average 

projections of students within each cluster. The 

spatial distances within the ENA diagram reflect 

differences in network structures, where closer 

dots indicate more similar interaction patterns, 

and greater distances signify more distinct 

structures. ENA analysis revealed four distinct 

interaction clusters, corresponding to different 

patterns of student-MathPal interactions. 

 
Figure 6: Distributions of four clusters of student-AI 

interactions 

The specific connection patterns within each 

cluster, visualized in Figure 7, further illustrate 

these distinctions. In Cluster 1, the strongest 

connection was observed between computational 

inquiry and strategic scaffolding. Meanwhile, 

there were several moderate connections such as 

clarification seeking-strategic scaffolding and 

solution-focused inquiry-strategic scaffolding. 

Comparatively, the most prominent connection in 

Cluster 2 was between solution-focused inquiry 

and strategic scaffolding, suggesting a goal-driven 

interaction pattern. In contrast, Cluster 3 exhibited 

more balanced connections overall, with a slightly 

stronger connection between strategic scaffolding 

and motivation scaffolding. Lastly, Cluster 4 

featured prominent connections among solution-

focused inquiry, computational inquiry, and 

strategic scaffolding, as well as a moderate 

connection between solution-focused inquiry and 

conceptual scaffolding, suggesting a blend of 

conceptual understanding and problem-solving 

strategies.  

Each cluster reflects an integrated pattern of 

how students regulate their  interactions with 

MathPal and their learning. By identifying these 

clusters (and more importantly their specific 

configurations), we can provide students with 

personalized support and also identify students 

who are not engaging with MathPal effectively in 

Problem-solving activities. 

 
Figure 7: Four types of student-AI interaction 

patterns 

4 Discussion & Implications  

This study examined how students interacted 

with MathPal, an AI-based scaffolding tool, 

during math problem-solving. Two core findings 

emerged: (1) students followed consistent 

inquiry–scaffolding patterns centered on 

procedural support, and (2) distinct student–AI 

collaborative problem-solving profiles reflected 

varying learning behaviors. These findings extend 

current research on AI tutoring systems (Holstein 

et al., 2019) and offer new insight into how 

generative AI can be adapted for more 

personalized, effective learning support in math 

problem-solving contexts. 

4.1 Personalizing AI Scaffolding Based on 

Student Inquiry 

Most student inquiries were solution-focused 

or computational, prompting primarily strategic 
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scaffolding from MathPal. While this guided 

students through procedural tasks, it offered less 

conceptual or motivational support. This 

imbalance suggests AI agents should better detect 

moments of confusion or disengagement to 

deliver metacognitive or motivational scaffolds. 

The findings align with the idea of contingent 

scaffolding, which emphasizes the need for 

support to be responsive to students’ evolving 

cognitive and affective states (Van de Pol et al., 

2010). Enhancing AI systems with adaptive 

feedback mechanisms that dynamically shift 

between strategic, conceptual, and motivational 

scaffolding may promote deeper learning by 

moving students beyond surface-level task 

completion toward the development of enduring 

mathematical understanding and problem-solving 

skills (Aleven et al., 2016). 

4.2 Personalizing Support Through 

Interaction Profiles 

The distinct interaction profiles offer actionable 

insights for designing more personalized and 

effective AI learning support. By recognizing 

students’ habitual inquiry patterns, AI systems can 

adapt their scaffolding strategies to align with 

individual cognitive and motivational needs. For 

instance, students who primarily engage in 

procedural or solution-focused exchanges may 

require targeted prompts that promote self-

explanation, conceptual elaboration, or 

metacognitive reflection (Belland, 2017). 

Conversely, students exhibiting more exploratory 

or conceptual dialogue might benefit from 

strategic scaffolds that help organize their 

thinking and support knowledge gaining. Such 

adaptive tailoring not only supports differentiated 

learning trajectories but also enables educators to 

detect patterns of disengagement or superficial 

inquiry and intervene to promote deeper 

engagement and sustained learning growth (Roll 

& Winne, 2015). 

4.3 Theoretical and Methodological 

Perspectives 

From a theoretical lens, the findings align with 

socio-cognitive perspectives that view learning as 

a co-constructed process. In the context of this 

study, students and the AI agent collaboratively 

constructed knowledge to complete problem-

solving tasks through dialogic interaction, learner-

driven inquiry, and scaffolded support (Mercer & 

Howe, 2012). The observed variation in student–

AI interaction patterns highlight the importance of 

context-sensitive scaffolding, reinforcing prior 

work that emphasizes the dynamic and situated 

nature of collaborative learning with intelligent 

tools (Sawyer, 2014). These profiles not only 

reflect variation in students' inquiry behaviors but 

may also signal different AI scaffolding patterns 

in math problem-solving contexts. 

Methodologically, this study demonstrates the 

value of combining qualitative coding with lag 

sequential analysis and ENA to capture both the 

structure and flow of human–AI interaction. ENA, 

in particular, proved effective in visualizing co-

occurring patterns that distinguish learner 

engagement types. The use of clustering to define 

emergent profiles further enhances ENA’s utility 

in learning analytics, offering a powerful lens for 

exploring personalized learning trajectories in 

real-world settings. 

5 Conclusion 

This study explored how high school students 

interact with a math AI agent, MathPal, during 

problem-solving activities. Findings revealed 

consistent patterns of inquiry and scaffolding, 

with students frequently seeking procedural help 

and the AI responding primarily with strategic 

guidance. Through ENA, four distinct interaction 

profiles emerged, reflecting differences in how 

students engage with AI support. These results 

highlight the need for adaptive AI scaffolding that 

responds not only to task demands but also to 

learners’ conceptual and motivational needs. By 

leveraging interaction patterns, educators and 

designers can create more personalized, 

responsive AI systems that better support 

students’ math learning in high school classrooms.  
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