Pre-trained Transformer Models for Standard-to-Standard Alignment Studies

Hye-Jeong Choi’, Reese Butterfuss’, Meng Fan®, and Emily Dickinson®

¢ HumRRO
b Certiverse

Abstract

The current study evaluated the accuracy of
five pre-trained large language models
(LLMs) in matching human judgment for
standard-to-standard  alignment  study.
Results demonstrated comparable
performance across LLMs despite
differences in scale and computational
demands.  Additionally, incorporating
domain labels as auxiliary information did
not enhance LLMs performance. These
findings provide initial evidence for the
viability of open-source LLMs to facilitate
alignment study and offer insights into the
utility of auxiliary information.

1« 1 Introduction

17 Large language models (LLMs) are increasingly
isused in  educational and  psychological
19 measurement  activities. Their  evolving
20 sophistication and ability to represent deep,
21 contextual semantics make them viable tools to
22 support subject matter experts (SMEs) in
23 reviewing large volumes of text-based context,
22 such as educational standards (e.g. Butterfuss &
25 Doran, 2025; Kim et al., 2023; Kusumawardani &
26 Alfarozi, 2023; Zhou & Ostrow, 2022). However,
27 little guidance exists on the effective use of LLMs
2s in such contexts. Our goal was to compare popular,
20 pretrained LLMs in a common measurement
30 context (i.e., standard-to-standard alignment) to
s1 provide initial evidence on which LLMs may be
a2 particularly useful for measurement tasks that
a3 require extensive review of large bodies of text.

Alignment is a critical aspect of validity
;s evidence for any assessment (AERA, APA,
s NCME, 2014). Standards-to-standards alignment
37 1s a process to examine how well two distinct sets
s of content standards target the same content
s (Neidorf et al., 2016). In general, it requires SMEs
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20 to review two sets of standards and determine
41 alignment such that each standard in one set is
4«2 evaluated against the standards in the second set
3 until any or all standards that capture the same
2 meaning are identified. It is a time-consuming
25 process because it requires evaluation of
46 potentially thousands of possible pairs of content
4«7 standards. Recently, the potential for NLP and
2 LLMs as a supporting tool in this process has been
20 presented (e.g., Butterfuss & Doran, 2024; Zhou &
s0 Ostrow, 2022), but there is a lack of work that
s1 provides guidance on which LLMs to choose for
s2 such tasks.

This study aimed to address two research
s« questions: (1) how do five popular pre-trained
ss transformer models compare in standards-to-
s6 standards alignment studies? and (2) does auxiliary
s7 information (e.g., domain label) impact LLMs
ss performance? Educational standards, typically
so presented as brief, abstract statements, often
s0 include examples to provide clarity and context. It
s1 18 also not uncommon to have the exact same
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s2 standard appear under different
ss domains. Understanding how such auxiliary
s« information influences LLMs performance is

ss crucial for developing more effective automated
s alignment tools.

e 2 Methods

s 2.1 Data

o The alignment study dataset used for the current
70 study consisted of individual standards from 33
71 states and aligned each state standard to the
72 corresponding the National Assessment of
72 Educational Progress (NAEP) standard for grades
24, 8, and 12 for science. Each standard was
75 classified into one of three domains: life science
76 (LS), physical science (PS), and earth & space
77 science (ES). The number of potential pairs ranged
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7s from approximately 18,000 to 60,000. The number
70 of standards represented within each state varied.
s0 In the original work, SMEs judged each possible
s1 pair of standards as aligned, partially aligned, or
s2 not aligned. Thus, we used the SME decision as
ss “ground truth” for evaluating the LLMs. More
s« details about the dataset and original alignment
study can be found in the published report
(Dickinson et al., 2021).
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s7 2.2 Pre-trained transformer models

We accessed the LLMs via the Hugging Face
Transformers library, a popular open-source library
that provides a simple and consistent way to use
pre-trained models for various NLP tasks. As of
2025, the Hub hosts over 50,000 models, many of
which are based on Transformer architectures.

The LLMs transform each content standard into
an embedding, or numeric representation of the
meaning of the text. Once every standard is
transformed into an embedding, then the relations
among the embeddings can be evaluated using
cosine similarity. Cosine similarity is a metric used
to measure how similar two vectors are irrespective
of their magnitude. It calculates the cosine of the
angle between two vectors, determining whether
they point in roughly the same direction.
Commonly used in text analysis, recommendation
systems, and information retrieval. While it
106 behaves similarly to a correlation in some contexts,
cosine similarity specifically only measures
directional similarity, not linear correlation or
magnitude.

In this study we used the cosine similarity
111 between every possible pair of standards that can
112 be made from the two sets. Doing so allows us to
gauge which standard pairs are more similar than
others. Critically, standard pairs that share high
semantic overlap (i.e., large cosine similarity
values) are more likely to be aligned than standard
pairs that share little semantic overlap (Butterfuss
& Doran, 2025).

To calculate cosine similarity, we utilized five
LLMs which are widely used, including all-
distilroberta-vl, all-MiniLM-L6-v2, multi-qa-
MiniLM-L6-cos-v1, all-mpnet-base-v2, and gtr-t5-
large. All of these are sentence embedding models
that can be usedto calculate cosine similarity
125 between texts. The mathematical formula for
calculating cosine similarity remains the same
across all these models. However, LLMs vary in
128 the specific linguistic features their embeddings
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12e emphasize, and thus LLMs differ in which aspects
130 of meaning contribute to cosine similarity values.
131 Due to this variability, we extracted embeddings
132 for each standard using five different popular
133 LLMs:
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o all_distilroberta_vl (DistiiRoBERTa-v1).
It is a distilled version of the ROBERTa (Liu et
al., 2019) model to cover a wide range of topics
and styles. It is a smaller, more efficient model
that's designed to be faster and more
computationally efficient.

e all_ MiniLM_L6_v2 (MiniLM-L6-v2).
MiniLM is designed for efficiency and smaller
size. It's useful for text classification, sentiment
analysis, or question answering. They are
particularly useful for deployment in resource-
constrained environments, such as mobile
devices or edge computing platforms (Wang et
al., 2020).

e multi ga_MiniLM_L6_cos_vl (MultiQA-
MiniLM-L6). It is a variant of the MiniLM
model that is designed for multi-question
answering tasks, such as answering multiple
questions about a given text passage,
identifying relevant passages or sentences that
answer multiple questions, and generating
answers to multiple questions based on a given
text passage.

e all_ mpnet_base v2 (MPNet-Base-v2). A
model known for its efficiency and
performance on a wide range of NLP tasks,
including text classification, sentiment
analysis, question answering, and more. It's
particularly useful when you need a model that
can handle long-range dependencies and
contextual relationships in text data.

o gtr t5 large (GTR-T5-Large). It is known
as a powerful language model. It can be used
text generation and summarization, question
answering and reading comprehension,
sentiment analysis and opinion mining, and
language translation and machine translation.

171 2.3 Three approaches to set a threshold

172 We employed three threshold setting approaches to
173 pair state and NAEP standards: cosine similarity
174 value, percentile, and rank order. First, we used
175 predetermined cosine similarity values: if the
176 cosine similarity of two-paired standards was
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177 greater than the predetermined cosine similarity
178 value, we classified the state-to-NAEP standard
179 pair as aligned. We used three different values as
10 the predetermined value (i.e., 0.4, 0.5, 0.6).

Second, we used a percentile to set the cut score
cosine similarity value. As mentioned in the
previous section, cosine similarity is a measure of
direction but not magnitude. Using percentile can
resolve potential scaling issues across LLMs. We
used three percentiles (i.e., 70, 80, 90) to obtain the
threshold of cosine similarity to pair standards.

Finally, we utilized a rank-order approach to
classify aligned standard pairs: if the cosine
similarity of standard pairs was within the
predetermined top n highest cosine similarity, we
classified those standards as aligned. We used top
3,5 and 10. After we classified each pair as either
aligned or not aligned based on those criteria, we
evaluated those results with SMEs judgment.

LLMs performance was evaluated using overall
accuracy, recall and F1 metrics. Overall accuracy
(either hit rate or precision) refers to the probability
of capturing the true matches (according to human
judgment) within condition. Recall measures the
proportion of actual positive instances that were
correctly identified by the model. It is a metric used
to evaluate the completeness of a classification
model's positive predictions. The Fl-score is a
metric that combines precision and recall into a
single value, providing a balance between these
two sometimes competing metrics. Precision
measures the proportion of correctly identified
positive instances among all instances that the
model predicted as positive. It's particularly useful
211 when you need a single measurement to evaluate a
classification model's performance.

181

©
-

©
3

@
©

©
=)

2

©
)

©
@

©
©

20

=)

20

20

)

20

@

N
=
=

N
o
©

N
=)

21

)

3 Results
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214 Comparison of five pre-trained

215 transformer models

Table 1 presents descriptive statistics for the
cosine-similarity values generated by each LLM
for each grade. Overall, the correlations between
LLMs were high (higher than .76). In both
conditions, the results indicated that the models
produced cosine-similarity values that were scaled
slightly differently. In particular, means of GTR-
223 T5-Large were higher and standard deviations
224 were smaller than other LLMs.

Table 2 summarizes comparison of LLMs to
226 SMEs with respect to the overall accuracy, recall,
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Table 1 Descriptive statistics of cosine similarity
by LLMs for each grade

Disil _ Mimi GTR- Mula
MPNet RoBElS{tT LM © T5 Sztx

Grade 4 (N=18,744)

Mean 22 18 19 55 17

STD 14 14 14 07 14

Grade 8 (N=55,857)

Mean 22 18 20 56 18

STD 13 13 14 06 .14

Grade 12 (N=59,829)

Mean 20 16 18 55 .16

STD 13 13 14 06 13

Note. MPNet = MPNet-Base-v2; DistilRoBERT =
DistilRoBERTa-v1; MiniLM = MiniLM-L6-v2; GTR-T5 =
GTR-T5-Large; MultiQA = MultiQA-MiniLM-L6

and F1. Note that we used three different methods

227

Table 2 Overall comparison LLMs results with
SMEs rating under different conditions

Cut Value Percentile Rank

Model  Stat
ode A "M STD M STD M STD
Fl 24 21 29 13 35 .13
?i?itz Recall 22 26 91 .11 .94 .05
Accuracy 98 .01 .86 .10 .89 .07
Disil _ Fl 20 21 29 13 35 .13
RoBERTa Recall .16 21 .90 .11 .94 .06
vl Accuracy 98 .01 .86 .10 .90 .07
. Fl 24 21 29 13 35 .13
“ﬁg"VLZM Recall 20 24 90 .12 94 .06
Accuracy .98 .01 .86 .10 .90 .07
Fl 19 19 29 .14 35 .14
ier'eTS Recall 53 44 91 .10 95 .04
g Accuracy .79 .30 .86 .10 .89 .07
MuliQA _F1 21 19 27 12 34 .13
‘MiniLM Recall .16 20 .87 .13 .92 .06
L6 Accuracy 98 .00 .85 .10 .90 .07

228 to classify pairs of standards: cosine similarity
229 value, percentile, and rank order. First, notably, the
230 free, open-source models fared nearly as well as the
231 costlier, more computationally intensive model
2.2 (GTR-TS-Large). Overall, the correlations
233 between LLMs were high (higher than .76).
232 Second, all LLMs performed similarly in capturing
235 the true pairs with respect to F1 and accuracy.
236 However, recall indicates percentile and rank
237 performed much better to identify the true pairs for
238 all five models. When cut score was used, GTR-
230 T5-Large performed differently from other four
220 models. That was because cosine similarity from
241 GTR-T5-Large tended different and larger than
242 four other models.
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244 Grade 4 as the results with other grades were
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Figure 1 F1 score trend of LLMs across cosine
similarity points (Grade 4)

Table 4 Comparison of LLMs at different ranks
(Grade 4, N=18,744)

Table 3 Comparison of LLMs at different
percentiles (Grade 4, N=18,744)

Model %ile Accuracy Recall Fl1
MPNet-Base-v2 70 73 1.00 .17
MPNet-Base-v2 80 .83 97 24
MPNet-Base-v2 90 .92 .83 .37
DistilRoBERTa-v1 70 .73 99 .17
DistilRoBERTa-v1 80 .83 94 24
DistilRoBERTa-v1 90 .92 .83 .37
MiniLM-L6-v2 70 73 99 17
MiniLM-L6-v2 80 .83 95 24
MiniLM-L6-v2 90 .92 .84 37
GTR-T5-Large 70 .73 99 .17
GTR-T5-Large 80 .83 97 24
GTR-T5-Large 90 .92 .89 .40
MultiQA-MiniLM-L6 70 .73 98 .17
MultiQA-MiniLM-L6 80 .83 95 24
MultiQA-MiniLM-L6 90 .92 .79 35

Model Rank Accuracy Recall FI 259
MPNet-Base-v2 3 .95 .87 .50 260
MPNet-Base-v2 5 .90 95 34 | L
MPNet-Base-v2 10 .76 99 .19 262
DistilRoBERTa-v1 3 95 .83 49 263
DistilRoBERTa-v1 5 90 93 34 |
DistilRoBERTa-v1 10 7699 19 |
MiniLM-L6-v2 3 95 85 .49
MiniLM-L6-v2 5 90 94 34 |*°
MiniLM-L6-v2 10 76 1.00 .19 | *
GTR-T5-Large 3 95 91 51 |*®
GTR-T5-Large 5 .90 97 35 250
GTR-T5-Large 10 76 100 .19 |
MultiQA-MiniLM-L6 3 95 83 49
MultiQA-MiniLM-L6 5 90 91 34 | o
MultiQA-MiniLM-L6 10 76 99 19 | 22

27,

©

Next, we will present the results focusing on 274

275

245 similar. Figure 1 depicts F1 across several cosine 276
206 similarity points from .50 to .90 for all five 277
227 language models for Grade 4. GTR-TS5-Large 278
245 performed best when the cosine similarity was set 279
240 at .70 whereas four languages models performed 2s0
250 best when the cosine similarity was set at .50. Table 281

251

252

253

2

a

4

255

4 presents the comparison of LLMs with different 2s2
ranks. As expected, LLMs captured the true pair 2s:
with lower ranks (rank=3). However, recall 2
indicates LLMs captured the true pair with rank=10. 2s5
In other words, the NAEP standards, with whic

286

256 the state standard is aligned, appear among the top 287
257 ten pairs rank-ordered by cosine similarity. Table 3 2ss
258 shows the comparison of LLMs with different 289

percentile. Again, LLMs performed similarly: the
higher percentile, the better in capturing the true
pairs with respect to accuracy whereas the lower
percentile, the better in terms of recall. Both
accuracy and recall indicate LLMs with either 70
percentile or rank order 10 well captured the true
pairs. In other words, the NAEP standards, with
which the state standard is aligned, appear among
the top ten or even top five pairs rank-ordered or 70
or 80 percentiles by cosine similarity.

3.2 Effects of domain information effect on

cosine similarity

Table 7 presents cosine similarity distributions
when domain labels were added for each grade.
Note that the N counts for all grades were slightly
larger than the N counts in Table 1. This was
because the same standard was assigned into
different domains. The descriptives were similar
with ones in Table 1; however, those values were
slightly lower. Also, the correlations between
cosine similarity measures for standard pairs with
domain were similar with ones without domain,
ranging from .75 to .92.

Next, we compare how LLMs performed to
capture the true pairs compared with cosine
similarity without domain. Again, we present the
results for Grade 4 as the results with other grades
were similar. Figure 2 depicts F1 scores across
several cosine similarity points from .50 to .90 for
all five language models for Grade 4. The results
show a similar pattern with Figure 1; with respect
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Table 7 Descriptive statistics of cosine similarity Table 6 Comparison of LLMs with domain at
with domain by LLMs for each grade different ranks (Grade 4, N=18,876)
MPNet Distil  Mini GTR Multi Model Rank Accuracy Recall FI
RoBERT LM -T5 QA MPNet-Base-v2 3 97 23 28
Grade 4 (N=18,846) MPNet-Base-v2 5 95 31 25
Mean 21 A7 17 55 .15 MPNet-Base-v2 10 88 44 .17
STD 13 A3 14 06 .13 DistilRoBERTa-v1 3 97 21 26
Grade 8 (N=56,932) DistilRoBER Ta-v1 5 95 28 .24
Mean 22 A7 19 56 .16 DistilRoBER Ta-v1 10 88 43 .17
STD 12 A3 13 06 .13 MiniLM-L6-v2 3 97 23 27
Grade 12 (N=59,927) MiniLM-L6-v2 5 95 30 25
Mean 20 A5 17 55 14 MiniLM-L6-v2 10 88 44 .17
NSzT DMPNt 1.\/1[133N B .IZ?D‘ t'l.li3BERT'O6 = GIR-T3-Large 3 o7 26 30
D(i)s'ceiiRoBEel:{Ta-vl; ]\E/:[inii?\ili fvﬁ;?LlM?Lo-vz; GTR-T5 = GTR-T5-Large 5 9 33 25
GTR-T5-Large; MultiQA = MultiQA-MiniLM-L6 GTR-T5-Large 10 .87 A7 17
MultiQA-MiniLM-L6 3 97 20 .25
MultiQA-MiniLM-L6 5 95 29 24
‘:z: —— e — %ﬂﬁ’?éli R — MultiQA-MiniLM-L6 10 88 45 17
80%
70% |
@ 60%
|- Table 5 Comparison of LLMs with domain at
o different percentiles (Grade 4, N=18,876)
30%
20% Model %ile Accuracy Recall F1
10% @ MPNet-Base-v2 70 .70 44 .08
0% e MPNet-Base-v2 80 .79 35 .09
o o D S o " MPNet-Base-v2 90 88 23 .10
DistilRoBERTa-v1 70 .70 44 .08
Figure 2 F1 Score by cosine similarity cut for DistilRoBERTa-v1 80 79 33 08
each language model with domain (Grade 4) DistilRoBERTa-v1 90 88 23 .10
MiniLM-L6-v2 70 .70 45 .08
200 to F1, GTR-T5-Large outperformed and performed MiniLM-L6-v2 80 79 35 09
201 the best when the cosine similarity was set at .70. MiniLM-L6-v2 90 88 23 10
202 Overall, however, all the five LLMs performed GTR-T5-Large 70 70 .46 .08
203 slightly worse with domain labels. GTR-T5-Large 80 79 38 .09
204 Table 6 and 7 show that domain information GTR-T5-Large 90 .89 25 .11
205 improved accuracy but reduced recall and F1. MultiQA-MiniLM-L6 70 70 44 .08
206 Adding domain labels did not enhance overall MultiQA-MiniLM-L6 80 79 .33 .08
207 model performance. MultiQA-MiniLM-L6 90 88 21 .09
2: 4 Summary and discussion s00 accurate at capturing the “true matches” according

s10 to human judgment above the 90 percentile or
s11 within the top five highest-cosine pairs. Put another
s12 way, for a given state standard, the SME-aligned
s1s NAEP standard had appeared either the 90
s14 percentile or among the top five cosine similarity
315 pairs.

s Using Grade 4 from our real-world alignment
s17 study as an example, the current method would
s1s reduce the number of pairs that SMEs must
319 compare from nearly 18,000 pairs to around 2,840
s20 pairs. Moreover, the current findings suggest that

The results of the current study indicated that
scaling differences among LLMs in raw cosine
similarity values meant that using a raw cosine
value threshold may not be feasible, particularly
s when comparing multiple LLMs. Overall, when
percentile or rank order was used, the results
suggest that the five LLMs performed comparably
s0s With respect to accuracy for standards-to-standards
w07 alignment of science content  standards.
s0s Specifically, the models were generally 90%
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any of the popular, open-source LLMs we
compared may yield such benefits. Thus, for
contexts similar to those in the current work,
researchers and practitioners may be well-suited to
choose any of the models we evaluated given their
comparable performance. Also, the current
findings highlight a potentially enormous
efficiency increase by dramatically reducing the
number of pairs SMEs must consider via
economical LLMs and a relatively simple
percentile or rank-order approach using cosine-
similarity.

Unfortunately, adding “domain” to the standard
did not improve LLMs performance to capture the
true matches. Subsequent work in this area is
needed to examine the added benefits of including
more contextual information for the LLMs when
extracting embeddings for each standard (i.e.,
content domain descriptions), as well as the
conditions under which it is useful to include or
omit accessory information that some content
standards include, such as exemplary information
or explanatory information. The results did not
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impacted by grade.

Critically, the current LLM approach does not
replace humans in making alignment decisions.
Instead, the method provides a simple, economical
s0 way to support SMEs in making alignment
decisions more efficiently by leveraging an
organizational structure based on semantic
similarity and constraining the number of viable
353 pairs that must be considered. Overall, the current
study represents a judicious, human-centered use
355 of Al in a laborious routine measurement task.
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