@inproceedings{gui-2025-entropy,
title = "From Entropy to Generalizability: Strengthening Automated Essay Scoring Reliability and Sustainability",
author = "Gui, Yi",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.34/",
pages = "312--328",
ISBN = "979-8-218-84228-4",
abstract = "Generalizability Theory with entropy-derived stratification optimized automated essay scoring reliability. A G-study decomposed variance across 14 encoders and 3 seeds; D-studies identified minimal ensembles achieving G {\ensuremath{\geq}} 0.85. A hybrid of one medium and one small encoder with two seeds maximized dependability per compute cost. Stratification ensured uniform precision across"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gui-2025-entropy">
<titleInfo>
<title>From Entropy to Generalizability: Strengthening Automated Essay Scoring Reliability and Sustainability</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Gui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>Generalizability Theory with entropy-derived stratification optimized automated essay scoring reliability. A G-study decomposed variance across 14 encoders and 3 seeds; D-studies identified minimal ensembles achieving G \ensuremath\geq 0.85. A hybrid of one medium and one small encoder with two seeds maximized dependability per compute cost. Stratification ensured uniform precision across</abstract>
<identifier type="citekey">gui-2025-entropy</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.34/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>312</start>
<end>328</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Entropy to Generalizability: Strengthening Automated Essay Scoring Reliability and Sustainability
%A Gui, Yi
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F gui-2025-entropy
%X Generalizability Theory with entropy-derived stratification optimized automated essay scoring reliability. A G-study decomposed variance across 14 encoders and 3 seeds; D-studies identified minimal ensembles achieving G \ensuremath\geq 0.85. A hybrid of one medium and one small encoder with two seeds maximized dependability per compute cost. Stratification ensured uniform precision across
%U https://aclanthology.org/2025.aimecon-main.34/
%P 312-328
Markdown (Informal)
[From Entropy to Generalizability: Strengthening Automated Essay Scoring Reliability and Sustainability](https://aclanthology.org/2025.aimecon-main.34/) (Gui, AIME-Con 2025)
ACL