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Abstract

Generalizability Theory with entropy-
derived stratification optimized automated
essay scoring reliability. A G-study
decomposed variance across 14 encoders
and 3 seeds; D-studies identified minimal
ensembles achieving G > 0.85. A hybrid of
one medium and one small encoder with
two seeds maximized dependability per
compute cost. Stratification ensured
uniform precision across complexity.

1 Introduction

Automated Essay Scoring (AES) systems based on
transformer architectures have transformed large-
scale writing assessment by offering both
scalability and consistency that rival human raters
(Shermis & Burstein, 2013). However, before
deployment in high-stakes contexts—such as
college admissions or professional licensure—
AES models must meet stringent psychometric
standards for reliability. In Classical Test Theory,
indices like Cronbach’s alpha confound multiple
error sources into a single coefficient, obscuring
the distinct contributions of prompt heterogeneity,
model stochasticity, and text complexity (Nunnally
& Bernstein, 1994). Generalizability Theory (G-
Theory) overcomes these limitations by
decomposing  observed-score  variance into
multiple facets and interactions, yielding the
generalizability coefficient (G-coefficient) as an
overall index of dependability (Brennan, 2001;
Cronbach et al., 1972).

In any G-Theory study, the object of
measurement—the entity whose universe score we
seek to estimate—is critical. For AES, as in large-
scale writing assessments like the GMAT AWA,
these objects are the test-takers themselves (Gao et

al., 2015). Here, each essay’s observed model score
is viewed as an estimate of that test-taker’s
“universe score” across all combinations of
prompts, model seeds, and cross-validation folds.

A persistent obstacle to AES reliability is uneven
precision across essays of varying complexity:
richly worded, syntactically complex essays tend to
yield larger residual errors, thereby reducing the G-
coefficient for those subsets (Shermis & Burstein,
2013). Shannon entropy—computed from token-
frequency distributions—offers a principled, near—
zero-cost measure of textual complexity (Shannon,
1948), but raw entropy correlates strongly (r > .80)
with essay length. To decouple length from
unpredictability, we standardize entropy (z-score)
and stratify essays into equal-size buckets that
contribute uniformly to variance-component
estimates.

The present study applies a Generalizability-
Theory approach to automated essay scoring by
incorporating standardized entropy buckets into
both G-Study and D-Study phases. After
estimating variance components for prompts,
entropy strata, encoder architectures, seed
initializations, and folds, we analytically predict G-
coefficients for alternative measurement designs—
varying the number and combination of
transformer models and random seeds—without
refitting mixed models. Our aim is to identify
minimal ensembles that meet a target reliability (G
> 0.85), thereby guiding more efficient and cost-
effective AES deployments.

This study is guided by three primary questions.

1) In a fully crossed G-study of test-takers
(essays) x encoders x seeds x folds, what
proportions of total score variance are
attributable to encoder choice, seed
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initialization, and fold assignment, and how
practically meaningful are these facets for
overall reliability?

2) Can essays stratified into equal-size buckets
based on standardized Shannon entropy be
seamlessly integrated into a G-Theory design,
thereby supporting more precise D-study
planning?

3) In the D-study phase, which minimal
combinations of encoder architectures and
seed replications suffice to reach the
predefined reliability threshold (G>0.85), and
how does this entropy-informed approach
reduce unnecessary computation in AES
system development?

2 Related Work

Evolution of Scoring Reliability Methods in
Writing Assessment.

Early research on essay scoring focused on
Classical Test Theory (CTT) concepts of reliability,
using measures like inter-rater correlation or
Cohen’s kappa to judge consistency between
human graders. A kappa value of 0.7 is often cited
as an acceptable minimum for essay scoring
reliability, as it accounts for roughly half of score
variance. Traditional writing assessments thus
aimed for high inter-rater agreement to ensure
reliable scores. However, CTT-based reliability is
limited in that it offers a single coefficient (like
Cronbach’s alpha or inter-rater correlation) for a
given test under fixed conditions, without
disentangling multiple error sources. This is
problematic for essay tasks, where score variance
may arise from multiple facets — differences in
raters, prompts, or occasions. Researchers
recognized that a more nuanced framework was
needed beyond what CTT provides.

Generalizability Theory (G-Theory) emerged as
that framework, extending CTT by incorporating
analysis of variance to parse out various sources of
measurement error (persons, raters, tasks, etc.) and
to estimate the dependability of scores under
varying conditions. Cronbach et al. (1972)
introduced the G-Theory model, defining the
generalizability coefficient (G-coefficient) as an
index analogous to reliability that reflects how well
observed scores generalize to the universe of all
possible scoring conditions. Unlike a single CTT
reliability, the G-coefficient can account for, say,

multiple essay prompts or rater inconsistencies
simultaneously. Subsequent works (Brennan,
2001; Shavelson & Webb, 1991) further formalized
G-Theory and its use in performance assessments.
In writing assessment research, G-Theory has been
used to examine how many raters or prompts are
needed to achieve dependable scores and to
diagnose where inconsistencies arise. For instance,
Huang (2008) applied G-theory to ESL writing
tests and found that using multiple tasks and raters
significantly improved score accuracy. These
studies demonstrated that classical inter-rater
reliability indices could be inadequate, and that G-
Theory provides deeper insight into the facets
affecting essay score reliability.

Generalizability Theory Applied to AES.

As Automated Essay Scoring (AES) systems have
matured—especially with  the advent of
transformer-based models—researchers  have
turned to Generalizability Theory (G-Theory) to
rigorously evaluate their reliability. Williamson et
al. (2012) first argued that an AES engine must
demonstrate stable performance not just on a single
prompt but across diverse essay tasks and forms. In
the high-stakes context of standardized tests—
where the objects of measurement are the test-
takers—Qao et al. (2015) extended that framework
in their GMAC AWA study by modeling facets
such as prompts, essay types (fixed), rating engines
versus human raters, and occasions. Because a
fully crossed design was impractical, they
employed overlapping G-Studies and D-Studies to
approximate universe-score variance, reporting
operational G-coefficients around 0.83.

Subsequent empirical work has confirmed the
value of this approach. Han and Sari (2024) applied
G-Theory to compare human raters with ETS’s e-
rater on a set of EFL essays, finding that human
raters introduced more score variance than the
automated engine. When automated and human
scores were combined, overall dependability
improved—underscoring how AES can mitigate
human-rater inconsistency. Bridgeman et al. (2012)
similarly showed that an AES system maintained
comparable reliability across gender and ethnic
subgroups, suggesting that machine scoring does
not exacerbate  demographic  biases in
measurement error.

Together, these studies illustrate two key points:
first, that G-Theory provides a nuanced, facet-level
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understanding of where scoring variability arises;
and second, that modern AES engines can achieve
reliability on par with—or even exceeding—that of
human raters, provided they are evaluated across a
representative range of prompts and test-taker
populations.

Entropy-Based  Approaches and  Score
Uncertainty
Information-theoretic =~ metrics—most  notably

Shannon entropy—have gained traction as tools for
characterizing essay complexity and anticipating
scoring uncertainty in automated systems. In
classical educational measurement, conditional
standard errors of measurement (CSEM)
acknowledge that precision can vary across score
levels or item types; by analogy, essays whose
linguistic patterns are highly unpredictable may
elicit greater variability in both human and
machine-generated scores. Shannon entropy,
computed from an essay’s token-frequency
distribution, quantifies this unpredictability: higher
entropy reflects richer vocabulary and structural
diversity, which can challenge consistency in
scoring. Several studies have extended this concept
by measuring relative entropy (Kullback—Leibler
divergence) between an essay’s word distribution
and a reference language model, demonstrating
that essays with greater divergence tend to produce
more dispersed human ratings (Atkinson & Palma,
2025).

Other work has leveraged entropy of next-token
probabilities from pretrained transformers to flag
low-confidence segments, finding that these high-
entropy regions correspond to larger prediction
errors. Such entropy-derived features thus serve as
data-driven proxies for CSEM, identifying essays
on which automated scorers are likely to be less
reliable (Atkinson & Palma, 2025).

Although entropy-informed methods are not yet
ubiquitous in production AES pipelines, they offer
a promising complement to aggregate reliability
indices and G-Theory analyses. Integrating entropy
as either a stratification facet or a diagnostic feature
enables more nuanced dependability assessments,
pinpointing when an individual essay score may
warrant caution. As AES systems continue to
evolve, embedding information-theoretic insights

1 Wall-clock time refers to the real-world elapsed
time measured from the start to the end of each
processing step, encompassing all computation, data

can enhance both psychometric rigor and
operational transparency, ensuring that automated
evaluations maintain equitable precision across the
full spectrum of student writing complexity.

3 Methods

Data

The PERSUADE 2.0 corpus originally comprised
over 25,000 persuasive essays from U.S. students
in grades 6—12. We restricted our analysis to ninth
through twelfth graders, yielding 13,815 unique
essays each annotated with a holistic score and
writer demographics (prompt, task type, grade,
gender, socioeconomic and ELL status). Because
each examinee submitted exactly one essay, essay
IDs are fully confounded with test-taker identity, so
all essay-level variance components mirror
examinee-level differences. To ensure balanced
coverage across topics, tasks, and grade levels, we
performed a stratified split by prompt x task x
grade, sequestering 10% (1,381 essays) as an
unlabeled “Holdout Evaluation Set” and retaining
12,428 essays for G-study and D-study modeling
(Figures 1-2).

Each essay in the holdout set was then scored
according to a fully crossed design of 14
transformer encoders x 3 random seeds x 5 cross-
validation folds, for a total of 14 x 3 x 5 =210
predictions per essay. All encoders shared a
common ordinal logistic regression (OLR) head
during fine-tuning and inference. Inference
proceeded by tokenizing each essay into sliding-
window segments matched to model-specific
maximum sequence lengths, pooling segment
representations into a single fixed-length
embedding, and passing that embedding through
the OLR head. The resulting 210 predicted scores
per essay were collated into one dataset. The wall-
clock times for the models are all presented in
Table 10.!

To examine complexity effects, we computed raw
Shannon  entropy  from  token-frequency
distributions (Figure 3, r = 0.741 with word count),
then standardized these values (z-scores) and
applied our equal-variance bucketing algorithm.
Standardization inverted the length correlation (r =

loading, and any idle or I/O wait times—analogous to
timing an event with a stopwatch.
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—0.641), equalizing variability across essay
lengths. Plotting sample variance against
standardized entropy (Figure 4) reveals a flat cloud
of points, indicating no systematic rise in
inconsistency for more complex texts. Likewise,
mean predicted score remains constant across
entropy levels (Figure 5), confirming that our
stratification yields uniform precision (variance)
and fairness (mean score) regardless of textual
complexity.

Entropy Standardization
Method

and Bucketing

To control for the confounding effect of essay
length on token-based complexity measures, we
first computed each essay’s Shannon entropy Hi
from its token-frequency distribution:

Hi=-Xp;log (p,,) (0

where p;, is the relative frequency of token ¢ in
essay i. These raw entropy values were then
standardized to z-scores

7. = H;—H
LN>1¢:))

2

centering and scaling the distribution so that z; has
mean zero and unit variance across the corpus.

Because our goal was to ensure that each
complexity stratum contributed equally to the D-
study’s variance estimates, we partitioned the
essays into buckets by equalizing the sum of their
observed score variances rather than by simple
quantile splits of z Denoting by vi the sample
variance of the 210 predictions for essay i, we
sought a set of cut-points {cj,...,cx-;}that induced
buckets B, = {i:c,_1 < z; < ¢, } satistying

1
Yien, Vi # XLy vi fork=1,...,K ()

Starting from a maximum K, we iteratively
reduced K until every prompt xbucket cell
contained at least the pre-specified minimum
number of essays. In practice, we sorted essays by
z;, formed cumulative sums of v;, and placed cut-
points at entropy values corresponding to equal
increments of total variance. Essays were then
assigned to buckets by thresholding their z; against
these cut-points. This “equal-variance” binning
guarantees that each entropy stratum contributes
the same total score dispersion—and, by enforcing
a minimum cell size per prompt, preserves
adequate data in every prompt x bucket
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combination for reliable variance-component
estimation.

G-Study Design

To decompose score variance across measurement
facets, we fit a series of linear mixed-effects
models in R using the Ime4 package. After
reshaping the predictions into long format—one
record per essay X encoder x seed x fold—and
subsetting by entropy bucket, we specified the
model

Predicted_scorej; = b+ Uy + Vpp) + Wppappi) +

“
Where  u,1;~N(0, aﬁ) captures prompt-level

Xer) T Eiju

variance, vp[;1~N(0, o) the bucket (entropy)
their
Xei1~N(O, 02) and the essay (test-taker) facet, and

effect, wyri;,p[ij~N(0, O'gb) interaction,
&ijki~N(0, 02) residual error. From each model
extracted  the components
ag,ag,agb,aez,arz via VarCorr(), supplying the
D-study

we variance

inputs  for
computations.

subsequent  analytic

D-Study Design

Using those variance components, we predicted the
generalizability coefficient G without refitting:

2
Otest—taker

G (5

2
Iresidual
Mhuckets*MeXNs

0.2
o2 prompt:bucket |
test—taker™ '

Nhuckets

Here ny,crets » Me » and ng are the numbers of
entropy buckets, encoders, and seeds. Two sweeps
6 6

were performed:
All (k) X (s)

combinations of k=2—6 small encoders and s=1-3
seeds (399 runs) identified the minimal small-
model sets achieving G>0.85.

Small-only ensembles:

Mixed small + medium ensembles: For each
subset of 1-4 medium encoders, we incrementally
added 1-6 small encoders under 1-3 seeds (5,401
runs), halting further expansion once a medium—
seed pair first attained G>0.95.

Large-model exploration: Finally, we considered
ensembles incorporating at least one large encoder
(BERT-Large, RoBERTa-Large, GPT-2 Large,
DeBERTa-V3 Large), applying a second early-stop
rule: after two distinct large-inclusive sets
surpassed G>0.95, no further large-model sweeps
were conducted.



These analytic D-study procedures rigorously chart
reliability gains against computational expense,
guiding selection of AES ensembles that meet
dependability targets with minimal overhead.

4 Results

1. Overall Reliability Ceiling

The fully crossed G-study design—incorporating
all 14 encoders, three seed initializations, and five-
fold  cross-validation—yielded  near-perfect
generalizability coefficients across entropy strata.
Substituting ne = 14, ng = 3, and Npyckets = 3
into the analytic D-study formula produced

Low-entropy bucket: G=0.990
Mid-entropy bucket: G=0.989
High-entropy bucket: G=0.989

An overall average of G=0.99 confirms that
exhaustive model diversity and replication
effectively  eliminate =~ measurement  error,
establishing an upper bound against which all
reduced-complexity ensembles are benchmarked.

After experimenting with different K values under
a minimum cell-size constraint, we determined that
only by requiring at least seven essays per prompt—
bucket cell could the equal-variance algorithm
produce three strata. Higher K values violated this
constraint, and K =2 proved too coarse for reliable
variance estimation. With the minimum cell size
set to seven, the algorithm converged on K = 3
buckets containing 451, 479, and 457 essays (Table
2), which we label as low, medium, and high
complexity based on their mean standardized-
entropy (z) scores. Table 3 details each prompt’s
essay counts within these buckets, confirming an
even distribution of texts across topics and
complexity levels.

Figure 6 illustrates that the holistic score
distributions are virtually identical across low,
medium, and high entropy strata. Each bucket
peaks in the mid-score range (2-4) and tapers
symmetrically toward the extremes (1 and 6), with
no stratum showing a  disproportionate
concentration at any particular score band. This
consistency confirms that our equal-variance
bucketing preserved the overall score profile:
textual complexity, as indexed by standardized
entropy, does not systematically bias the
distribution of human-assigned scores.

2. G-Study Facet Contributions

Despite this high ceiling, the initial G-study
decomposition (Table 4) reveals that genuine test-
taker differences remain the predominant source of
score variability. Across all three entropy strata, the
essay/test-taker component oF accounted for
approximately 60—65 % of total variance. Residual
error o contributed another 11-14 %. In contrast,
encoder choice 7 explained only 12-18 %, seed
initialization 6& 2-4 %, and fold assignment o
less than 1 %. Interaction terms—encoder X seed,
encoder x fold, seed x fold—were effectively zero
(Table 4).

Thus, although true-score variance dominates AES
reliability, the nontrivial contributions of model
architecture and random seed justify their explicit
modeling in both G- and D-study phases.

3. Small-Only D-Study: Trading Seeds for Model
Diversity

A full sweep of the six “small” transformers
(ELECTRA Small (Discriminator), DistilBERT-
base (uncased), DeBERTa-v3-small, GPT-2
(small), MiniLM-L6-uncased, MobileBERT-
uncased) crossed with 1-3 seeds (399 designs with
354 of them obtained G values>0.85) revealed
clear trade-offs between architectural diversity and
seed replication (Table 5; Figure 7). Under a single-
seed design, two- and three-encoder ensembles fail
to reach G=0.85, but four small encoders just meet
it (G=0.851), and adding one or two more models
raises reliability to approximately 0.868 and 0.882,
respectively. Introducing a second seed yields
larger gains: three encoders under two seeds
already surpass G=0.85, and six encoders exceed
0.90. With three seed replications, even the
minimal two-model pairing (GPT-2-small +
MobileBERT) reaches G=0.921; adding a third
model pushes G to roughly 0.942, and four-model
ensembles climb to about 0.952. Beyond four
encoders, marginal improvements taper off—five-
and six-model ensembles with three seeds achieve
G~0.958 and 0.962, respectively (Figure 8).

Figure 9 renders these results as smooth surfaces in
the (number of encoders, number of seeds, G-
coefficient) space. All three seed planes rise steeply
from two to three encoders before plateauing,
indicating diminishing returns on adding more
models. Conversely, each additional seed shifts the
entire surface upward by an almost constant
amount, confirming that seed replication is a more
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efficient lever for boosting reliability once a
modest ensemble is in place. In resource-
constrained settings (e.g., limited GPU memory),
two or three encoders with three seeds offer the
fastest route to G > 0.85; where parallelism is
abundant, larger ensembles can edge closer to the
reliability ceiling but with diminishing payoff.

4. Mixed D-Study: Leveraging Medium-Sized
Models

To explore hybrid configurations, we swept 5,401
designs combining 1-4 medium transformers, 1-6
small transformers, and 1-3 seed replications. As
in the small-only study, an early-stop rule was
enforced: for each medium-seed pairing,
additional small models were added only until
G>0.85 was first reached (see Table 8). We then
ranked each ensemble by a simple “resource”
metric (number of models + number of seeds) to
identify the most cost-effective solutions (Table 9).

Remarkably, a two-model hybrid—one medium
encoder (BERT-Base), one small encoder
(DistilBERT-base), and two seeds (resource = 4)—
achieved G=0.895, exceeding every small-only
design at the same resource level. This single-
medium + single-small configuration appears as
the top entry in Table 9. Although adding more
small models or seeds continued to raise G, the
incremental benefit per added compute unit
diminished rapidly.

Encouraged by these mid-range gains, we briefly
evaluated large transformers under a second early-
stop: once two large-inclusive ensembles surpassed
G>0.95, we terminated further exploration on cost-
benefit grounds. The reliability uplift from large
models (=1-2 percentage points) did not justify
their 5-10x higher FLOPs, memory footprint, and
energy cost.

Together, Tables 8 and 9 illustrate that compact
mixed ensembles—anchored by a single medium
transformer, a single small transformer, and
minimal seed replication—deliver the highest
generalizability per unit of compute.

5 Discussion

The D-Study sweeps reveal a clear trade-off
between reliability and computational cost. Small-
only configurations must marshal at least five
combined encoder-and-seed resources to surpass a
generalizability coefficient of 0.85, whereas a

compact hybrid ensemble of one medium
transformer, one small transformer, and two seed
replications achieves approximately 0.90 with only
four resources. This efficiency frontier underscores
that thoughtfully chosen model diversity and
minimal replication can meet rigorous reliability
thresholds while markedly curbing FLOPs, GPU
memory, and energy consumption.

Our G-Study also confirms that large
transformers—despite  reducing encoder-facet
variance by just one to two percentage points—
incur disproportionately high compute and
environmental costs, making medium-sized
architectures the practical backbone for high-stakes
scoring. By treating each essay (and thus each
examinee) as the object of measurement, the
mixed-effects framework captures both content
and ability variance in a single term, aligning our
dependability  estimates  with  established
psychometric  practice. Moreover, entropy-
stratified bucketing ensured that low-, mid-, and
high-complexity texts contributed equally to
variance-component estimation, guarding against
bias from essay length or richness and validating
the fairness of our reliability analyses.

Looking ahead, enriching our simple resource
metric with actual FLOPs, GPU-hours, and energy
use would enable truly multi-objective D-studies.
Exploring adaptive or continuous stratification and
designs with multiple essays per examinee could
further disentangle content from ability variance
and broaden applicability beyond holistic scoring.

6 Conclusion

This study integrates standardized Shannon-
entropy stratification within a Generalizability-
Theory framework to guide efficient AES
ensemble design. A fully crossed G-Study (14
encoders x 3 seeds % 5 folds) quantified error
sources across prompts, entropy strata, encoder
models, and seed initializations. Analytic D-Study
formulas  then  predicted  generalizability
coefficients for over 5,800 hypothetical ensembles
without refitting models, revealing that compact
hybrids of medium and small transformers with
limited seed replication achieve target reliability at
minimal cost. By balancing psychometric rigor
with computational pragmatism, our approach
offers a principled roadmap for deploying reliable,
fair, and sustainable AES systems across diverse
writing complexities.
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A Appendices

Hidden Approx. Max Seq.
Category Model Size # Layers  # Heads Parameters Length
ELECTRA Small 256 12 4 14M 512
(Discriminator)
DistilBERT-base (uncased) 768 6 12 66 M 512
Small  DeBERTa-v3-small 768 6 12 86 M 512
GPT-2 (small) 768 12 12 124 M 1024
MiniLM-L6-uncased 384 6 12 22M 512
MobileBERT-uncased 512 24 4 25M 512
BERT-base-uncased 768 12 12 110 M 512
RoBERTa-base 768 12 12 125 M 512
Medium: 1 oformer-base-4096 768 12 12 149 M 4096
GPT-2 (medium) 1024 24 16 355 M 1024
BERT-large-uncased 1024 24 16 340 M 512
RoBERTa-large 1024 24 16 355M 512
Large  Gp1.2 (large) 1280 36 20 774 M 1024
DeBERTa-v3-large 1 024 24 16 304 M 512

Table 1 General Information Comparison of All (14) Encoder Models used

Bucket N Mean Range SD Entropy Bucket
Prompt
Low 451  1.131 0.909~1237 0.048 L M H
2 479 1176 1.100~1.276  0.040 ](;'f‘r'free ‘;meS. 1232 152
1stance learnin
3 457 1.216  1.125~1.331 0.038 s 95 80 43
Does the electoral college
9 78 37
work?
Table 2. Entropy Bucketing Result using the Equal Driverless cars 50 81 58
Variance Method .
Exploring Venus 38 78 70
Facial action coding system 62 71 84
Summer projects 104 59 13
Total 451 479 457

Table 3 Essay Distribution in Entropy Bucket by

Prompt
Bucket o’k o2%s o%F ot 02Exs 0 2ExF 02sxF 0 % Residual
Low 0.00479 0 1.34 x 1077 1.231 0 0 0 0.163
Mid 0.00019 1.7 x 10710 0 1.274 0 0 0 0.157
High 0.00051 5.4 x10°¢ 0 0.954 0 0 3.1x10° 0.164

Table 4 Variance Components and Ceiling-G Coefficients by Entropy Bucket
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# Encoders # Seeds Mean G

2 3 0.872
3 2 0.860
4 1 0.851

Table 5. Minimal small-only configurations achieving G > 0.85

Seeds  Encoders Encoder Set G-Coefficient

3 DistilBERT-base , GPT-2 (small) , MobileBERT-uncased 0.866

DistilBERT-base , DeBERTa-v3-small , GPT-2 (small) ,

. 4 MobileBERT-uncased 0.893
5 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3- 0.909
small , GPT-2 (small) , MobileBERT-uncased ’
6 ELECTRA Small (Discriminator) , DistiBERT-base , DeBERTa-v3- 0.920
small , GPT-2 (small) , MiniLM-L6-uncased, MobileBERT-uncased :
2 DistilBERT-base , MobileBERT-uncased 0.893
3 DistilBERT-base , GPT-2 (small) , MobileBERT-uncased 0.922
> 4 DistilBERT-base , DeBERTa-v3-small , GPT-2 (small) , 0.937
MobileBERT-uncased ’
5 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3- 0.946
small , GPT-2 (small) , MobileBERT-uncased ’
6 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3- 0.951
small , GPT-2 (small) , MiniLM-L6-uncased, MobileBERT-uncased ’
2 GPT-2 (small) , MobileBERT-uncased 0.921
3 DistilBERT-base , GPT-2 (small) , MobileBER T-uncased 0.942
3 4 DistilBERT-base , DeBERTa-v3-small , GPT-2 (small) , 0.952
MobileBERT-uncased ’
5 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3- 0.958
small , GPT-2 (small) , MobileBERT-uncased ’
6 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3- 0.962

small , GPT-2 (small) , MiniLM-L6-uncased, MobileBERT-uncased

Table 6. Best G = 0.85 Designs By Seed And Encoder Count in Small-encoder Ensemble
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N of Encoders Small Encoders Seeds G
1 DistilBERT-base 3 0.872
2 GPT-2 small; MobileBERT-uncased 3 0.921
3 DistilBERT-base; GPT-2 small; MobileBERT-uncased 3 0.942
4 DistilBERT-base; DeBERTa-V3 small; GPT-2 small; MobileBERT- 3 0.952
uncased
5 ELECTRA Small (Discriminator) ; DistilBERT-base; DeBERTa-V3 3 0.958
small; GPT-2 small; MobileBERT-uncased
6 ELECTRA Small (Discriminator) ; DistiIBERT-base; DeBERTa-V3 3 0.962
small; GPT-2 small; MiniLM-L6-uncased; MobileBERT-uncased
Table 7 Best Small-encoder Ensemble Designs by Number of Models.
Medium Encoder #of M Small Encoder #of S # of seeds G
Encoders Encoders
BERT-base-uncased 1 DistilBERT-base (uncased) 1 2 0.895
BERT-base-uncased 1 DistilBERT-base (uncased) 1 2 0.895
BERT-base-uncased 1 DistilBERT-base (uncased) 1 2 0.895
BERT-base-uncased 1 GPT-2 (small) 1 2 0.894
BERT-base-uncased 1 GPT-2 (small) 1 2 0.894
Table 8. Top 5 G > 0.85 Mixed Ensemble Designs with Fewest Resources
Medium Encoder # of M Small Encoder #of S f# of G
Encoders Encoders seeds
BERT-base-uncased , ELECTRA Small (Discriminator) ,
RoBERTa-base , DistilBERT-base , DeBERTa-v3-small ,
Longformer-base-4096 , 4 GPT-2 (small), MiniLM-L6-uncased , 6 3 0.968
GPT-2 (medium) MobileBERT-uncased
BERT-base-uncased , ELECTRA Small (Discriminator) ,
RoBERTa-base , DistilBERT-base , DeBERTa-v3-small ,
Longformer-base-4096 3 GPT-2 (small), MiniLM-L6-uncased , 6 3 0.968
MobileBERT-uncased
BERT-base-uncased , ELECTRA Small (Discriminator) ,
RoBERTa-base , GPT-2 DistilBERT-base , DeBERTa-v3-small ,
(medium) 3 GPT-2 (small), MiniLM-L6-uncased , 6 3 0.968
MobileBERT-uncased
BERT-base-uncased , ELECTRA Small (Discriminator) ,
Longformer-base-4096 , DistilBERT-base , DeBERTa-v3-small ,
GPT-2 (medium) 3 GPT-2 (small), MiniLM-L6-uncased , 6 3 0.967
MobileBERT-uncased
BERT-base-uncased , ELECTRA Small (Discriminator) ,
RoBERTa-base DistilBERT-base , DeBERTa-v3-small ,
2 GPT-2 (small), MiniLM-L6-uncased , 6 3 0.967

MobileBERT-uncased

Table 9. Mixed Designs with Top 5 G-coefficients
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Category Model Train. Test. Full 3x5 CV
Embedding Embedding & Merge
f&fgﬁiats;nr)a” 0h9m29s Ohlm3s  Ohl2m45s
DistilIBERT-base 0hl0m18s OhIml10s 0h17m42s
Small DeBERTa-v3-small 0h31m53s 0h3m30s Oh4lm14s
GPT-2 (small) Oh4lm54s Oh4m3ls 0h52m46s
MiniLM-L6-uncased 0h4m50s 0hOm32s 0h8m49s
MobileBERT-uncased Oh2Iml12s Oh2mlS5s 0h28m10s
BERT-base-uncased Oh2Imé6s 0h2m27s 0h29m48s
RoBERTa-base Oh2Im18s O0Oh2m25s 0h30m3&8s
Medium
Longformer-base-4096 5h40m48s O0h38m3s 6h24m32s
GPT-2 (medium) 2h2m50s Oh13ml4s 2h24m?24s
BERT-large-uncased 1h4m4ls Oh7m17s 1h20m 10s
RoBERTa-large 1h10m46s Oh7m358s 1h27m?23s
harge GPT-2 (large) 4h29m16s Oh3lmlls Sh1lm33s
DeBERTa-v3-large 2h58m33s 0h20m48s 3h28mli2s

Table 10. Wall-Clock Times for Embedding and 3x5 Cross-Validation Scoring of 14 Transformer Encoders
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Distribution of Word Count (N=12428)

Distribution of Essay Score (N=12428)
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Figure 1. Descriptive Statistics of Essays in Training Set and the Test-takers’ Demographic Information
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Distribution of Word Count (N=1387)

Distribution of Essay Score (N=1387)
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Figure 2. Descriptive Statistics of Essays in “Holdout evaluation set” and the Test-takers’ Demographic

Information
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Word Count vs. Raw Entropy

Essay Word Count vs. Standardized Entropy
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Figure 3. Comparison of Scatterplots of Word Count vs. Raw Shannon Entropy and Standardized Entropy

Sample Variance vs. Standardized Entropy
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Figure 4. Scatterplot of Score Sample Variance and Standardized Entropy
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Standardized Entropy vs. Mean Predicted Score

Mean Predicted Score

0.9

1.0

1.1

Standardized Entropy (z-score)

Figure 5. Scatterplot of Standardized Entropy vs. Mean Predicted Scores
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Figure 6. Histogram of Essay Score Distribution by Entropy Bucket
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. Mean G-Coefficient by Number of Seeds
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Figure 7. Mean G-coefficients by Number of Seeds in Small-encoder Ensemble Designs
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Figure 8. Mean G-coefficients by Number of Small-encoders in Small-encoder Ensemble Designs
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Reliability Surface: Mean G Values vs Encoders & Seeds

Figure 9. 3-D Plot of Mean C-cefficients vs. Number of Encoders and Seeds
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