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Abstract 

Generalizability Theory with entropy-
derived stratification optimized automated 
essay scoring reliability. A G-study 
decomposed variance across 14 encoders 
and 3 seeds; D-studies identified minimal 
ensembles achieving G ≥ 0.85. A hybrid of 
one medium and one small encoder with 
two seeds maximized dependability per 
compute cost. Stratification ensured 
uniform precision across complexity. 

1 Introduction 

Automated Essay Scoring (AES) systems based on 
transformer architectures have transformed large‐
scale writing assessment by offering both 
scalability and consistency that rival human raters 
(Shermis & Burstein, 2013). However, before 
deployment in high‐stakes contexts—such as 
college admissions or professional licensure—
AES models must meet stringent psychometric 
standards for reliability. In Classical Test Theory, 
indices like Cronbach’s alpha confound multiple 
error sources into a single coefficient, obscuring 
the distinct contributions of prompt heterogeneity, 
model stochasticity, and text complexity (Nunnally 
& Bernstein, 1994). Generalizability Theory (G-
Theory) overcomes these limitations by 
decomposing observed‐score variance into 
multiple facets and interactions, yielding the 
generalizability coefficient (G-coefficient) as an 
overall index of dependability (Brennan, 2001; 
Cronbach et al., 1972). 

In any G-Theory study, the object of 
measurement—the entity whose universe score we 
seek to estimate—is critical. For AES, as in large‐
scale writing assessments like the GMAT AWA, 
these objects are the test‐takers themselves (Gao et 

al., 2015). Here, each essay’s observed model score 
is viewed as an estimate of that test-taker’s 
“universe score” across all combinations of 
prompts, model seeds, and cross‐validation folds.  

A persistent obstacle to AES reliability is uneven 
precision across essays of varying complexity: 
richly worded, syntactically complex essays tend to 
yield larger residual errors, thereby reducing the G-
coefficient for those subsets (Shermis & Burstein, 
2013). Shannon entropy—computed from token-
frequency distributions—offers a principled, near–
zero-cost measure of textual complexity (Shannon, 
1948), but raw entropy correlates strongly (r > .80) 
with essay length. To decouple length from 
unpredictability, we standardize entropy (z-score) 
and stratify essays into equal-size buckets that 
contribute uniformly to variance-component 
estimates. 

The present study applies a Generalizability-
Theory approach to automated essay scoring by 
incorporating standardized entropy buckets into 
both G-Study and D-Study phases. After 
estimating variance components for prompts, 
entropy strata, encoder architectures, seed 
initializations, and folds, we analytically predict G-
coefficients for alternative measurement designs—
varying the number and combination of 
transformer models and random seeds—without 
refitting mixed models. Our aim is to identify 
minimal ensembles that meet a target reliability (G 
≥ 0.85), thereby guiding more efficient and cost-
effective AES deployments. 

This study is guided by three primary questions.  

1) In a fully crossed G-study of test-takers 
(essays) × encoders × seeds × folds, what 
proportions of total score variance are 
attributable to encoder choice, seed 
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initialization, and fold assignment, and how 
practically meaningful are these facets for 
overall reliability?  

2) Can essays stratified into equal-size buckets 
based on standardized Shannon entropy be 
seamlessly integrated into a G-Theory design, 
thereby supporting more precise D-study 
planning?  

3) In the D-study phase, which minimal 
combinations of encoder architectures and 
seed replications suffice to reach the 
predefined reliability threshold (G≥0.85), and 
how does this entropy-informed approach 
reduce unnecessary computation in AES 
system development? 

2 Related Work 

Evolution of Scoring Reliability Methods in 
Writing Assessment.  

Early research on essay scoring focused on 
Classical Test Theory (CTT) concepts of reliability, 
using measures like inter-rater correlation or 
Cohen’s kappa to judge consistency between 
human graders. A kappa value of 0.7 is often cited 
as an acceptable minimum for essay scoring 
reliability, as it accounts for roughly half of score 
variance. Traditional writing assessments thus 
aimed for high inter-rater agreement to ensure 
reliable scores. However, CTT-based reliability is 
limited in that it offers a single coefficient (like 
Cronbach’s alpha or inter-rater correlation) for a 
given test under fixed conditions, without 
disentangling multiple error sources. This is 
problematic for essay tasks, where score variance 
may arise from multiple facets – differences in 
raters, prompts, or occasions. Researchers 
recognized that a more nuanced framework was 
needed beyond what CTT provides. 

Generalizability Theory (G-Theory) emerged as 
that framework, extending CTT by incorporating 
analysis of variance to parse out various sources of 
measurement error (persons, raters, tasks, etc.) and 
to estimate the dependability of scores under 
varying conditions. Cronbach et al. (1972) 
introduced the G-Theory model, defining the 
generalizability coefficient (G-coefficient) as an 
index analogous to reliability that reflects how well 
observed scores generalize to the universe of all 
possible scoring conditions. Unlike a single CTT 
reliability, the G-coefficient can account for, say, 

multiple essay prompts or rater inconsistencies 
simultaneously. Subsequent works (Brennan, 
2001; Shavelson & Webb, 1991) further formalized 
G-Theory and its use in performance assessments. 
In writing assessment research, G-Theory has been 
used to examine how many raters or prompts are 
needed to achieve dependable scores and to 
diagnose where inconsistencies arise. For instance, 
Huang (2008) applied G-theory to ESL writing 
tests and found that using multiple tasks and raters 
significantly improved score accuracy. These 
studies demonstrated that classical inter-rater 
reliability indices could be inadequate, and that G-
Theory provides deeper insight into the facets 
affecting essay score reliability. 

Generalizability Theory Applied to AES.  

As Automated Essay Scoring (AES) systems have 
matured—especially with the advent of 
transformer‐based models—researchers have 
turned to Generalizability Theory (G-Theory) to 
rigorously evaluate their reliability. Williamson et 
al. (2012) first argued that an AES engine must 
demonstrate stable performance not just on a single 
prompt but across diverse essay tasks and forms. In 
the high-stakes context of standardized tests—
where the objects of measurement are the test-
takers—Gao et al. (2015) extended that framework 
in their GMAC AWA study by modeling facets 
such as prompts, essay types (fixed), rating engines 
versus human raters, and occasions. Because a 
fully crossed design was impractical, they 
employed overlapping G-Studies and D-Studies to 
approximate universe-score variance, reporting 
operational G-coefficients around 0.83. 

Subsequent empirical work has confirmed the 
value of this approach. Han and Sari (2024) applied 
G-Theory to compare human raters with ETS’s e-
rater on a set of EFL essays, finding that human 
raters introduced more score variance than the 
automated engine. When automated and human 
scores were combined, overall dependability 
improved—underscoring how AES can mitigate 
human‐rater inconsistency. Bridgeman et al. (2012) 
similarly showed that an AES system maintained 
comparable reliability across gender and ethnic 
subgroups, suggesting that machine scoring does 
not exacerbate demographic biases in 
measurement error. 

Together, these studies illustrate two key points: 
first, that G-Theory provides a nuanced, facet‐level 
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understanding of where scoring variability arises; 
and second, that modern AES engines can achieve 
reliability on par with—or even exceeding—that of 
human raters, provided they are evaluated across a 
representative range of prompts and test-taker 
populations. 

Entropy-Based Approaches and Score 
Uncertainty  

Information-theoretic metrics—most notably 
Shannon entropy—have gained traction as tools for 
characterizing essay complexity and anticipating 
scoring uncertainty in automated systems. In 
classical educational measurement, conditional 
standard errors of measurement (CSEM) 
acknowledge that precision can vary across score 
levels or item types; by analogy, essays whose 
linguistic patterns are highly unpredictable may 
elicit greater variability in both human and 
machine-generated scores. Shannon entropy, 
computed from an essay’s token-frequency 
distribution, quantifies this unpredictability: higher 
entropy reflects richer vocabulary and structural 
diversity, which can challenge consistency in 
scoring. Several studies have extended this concept 
by measuring relative entropy (Kullback–Leibler 
divergence) between an essay’s word distribution 
and a reference language model, demonstrating 
that essays with greater divergence tend to produce 
more dispersed human ratings (Atkinson & Palma, 
2025). 

Other work has leveraged entropy of next‐token 
probabilities from pretrained transformers to flag 
low‐confidence segments, finding that these high‐
entropy regions correspond to larger prediction 
errors. Such entropy‐derived features thus serve as 
data‐driven proxies for CSEM, identifying essays 
on which automated scorers are likely to be less 
reliable (Atkinson & Palma, 2025).  

Although entropy‐informed methods are not yet 
ubiquitous in production AES pipelines, they offer 
a promising complement to aggregate reliability 
indices and G‐Theory analyses. Integrating entropy 
as either a stratification facet or a diagnostic feature 
enables more nuanced dependability assessments, 
pinpointing when an individual essay score may 
warrant caution. As AES systems continue to 
evolve, embedding information‐theoretic insights 

 
1 Wall-clock time refers to the real-world elapsed 
time measured from the start to the end of each 
processing step, encompassing all computation, data 

can enhance both psychometric rigor and 
operational transparency, ensuring that automated 
evaluations maintain equitable precision across the 
full spectrum of student writing complexity. 

3 Methods  

Data 

The PERSUADE 2.0 corpus originally comprised 
over 25,000 persuasive essays from U.S. students 
in grades 6–12. We restricted our analysis to ninth 
through twelfth graders, yielding 13,815 unique 
essays each annotated with a holistic score and 
writer demographics (prompt, task type, grade, 
gender, socioeconomic and ELL status). Because 
each examinee submitted exactly one essay, essay 
IDs are fully confounded with test‐taker identity, so 
all essay‐level variance components mirror 
examinee‐level differences. To ensure balanced 
coverage across topics, tasks, and grade levels, we 
performed a stratified split by prompt × task × 
grade, sequestering 10% (1,381 essays) as an 
unlabeled “Holdout Evaluation Set” and retaining 
12,428 essays for G‐study and D‐study modeling 
(Figures 1–2).  

Each essay in the holdout set was then scored 
according to a fully crossed design of 14 
transformer encoders × 3 random seeds × 5 cross-
validation folds, for a total of 14 × 3 × 5 = 210 
predictions per essay. All encoders shared a 
common ordinal logistic regression (OLR) head 
during fine-tuning and inference. Inference 
proceeded by tokenizing each essay into sliding-
window segments matched to model-specific 
maximum sequence lengths, pooling segment 
representations into a single fixed-length 
embedding, and passing that embedding through 
the OLR head. The resulting 210 predicted scores 
per essay were collated into one dataset. The wall-
clock times for the models are all presented in 
Table 10.1 

To examine complexity effects, we computed raw 
Shannon entropy from token‐frequency 
distributions (Figure 3, r = 0.741 with word count), 
then standardized these values (z-scores) and 
applied our equal-variance bucketing algorithm. 
Standardization inverted the length correlation (r = 

loading, and any idle or I/O wait times—analogous to 
timing an event with a stopwatch. 
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−0.641), equalizing variability across essay 
lengths. Plotting sample variance against 
standardized entropy (Figure 4) reveals a flat cloud 
of points, indicating no systematic rise in 
inconsistency for more complex texts. Likewise, 
mean predicted score remains constant across 
entropy levels (Figure 5), confirming that our 
stratification yields uniform precision (variance) 
and fairness (mean score) regardless of textual 
complexity. 

Entropy Standardization and Bucketing 
Method 

To control for the confounding effect of essay 
length on token‐based complexity measures, we 
first computed each essay’s Shannon entropy Hi 
from its token‐frequency distribution: 

𝐻𝑖 = −∑ 𝑝𝑖,𝑡𝑙𝑜𝑔	(𝑝𝑖,𝑡)𝑡   (1) 

where pi,t is the relative frequency of token t in 
essay i. These raw entropy values were then 
standardized to z‐scores 

𝑧! =
"!#"$

%&(")
   (2) 

centering and scaling the distribution so that zi has 
mean zero and unit variance across the corpus. 

Because our goal was to ensure that each 
complexity stratum contributed equally to the D‐
study’s variance estimates, we partitioned the 
essays into buckets by equalizing the sum of their 
observed score variances rather than by simple 
quantile splits of zi. Denoting by νi the sample 
variance of the 210 predictions for essay i, we 
sought a set of cut‐points {c1,…,cK−1}that induced 
buckets 𝐵𝑘 = {𝑖: 𝑐𝑘−1 < 𝑧𝑖 ≤ 𝑐𝑘} satisfying 

∑ 𝜈𝑖 ≈𝑖∈𝐵𝑘
1
𝐾
∑ 𝜈𝑖𝑁
𝑖=1 	𝑓𝑜𝑟	𝑘 = 1, . . . , 𝐾  (3) 

Starting from a maximum K, we iteratively 
reduced K until every prompt × bucket cell 
contained at least the pre‐specified minimum 
number of essays. In practice, we sorted essays by 
zi, formed cumulative sums of νi, and placed cut‐
points at entropy values corresponding to equal 
increments of total variance. Essays were then 
assigned to buckets by thresholding their zi against 
these cut‐points. This “equal‐variance” binning 
guarantees that each entropy stratum contributes 
the same total score dispersion—and, by enforcing 
a minimum cell size per prompt, preserves 
adequate data in every prompt × bucket 

combination for reliable variance‐component 
estimation. 

G-Study Design 

To decompose score variance across measurement 
facets, we fit a series of linear mixed-effects 
models in R using the lme4 package. After 
reshaping the predictions into long format—one 
record per essay × encoder × seed × fold—and 
subsetting by entropy bucket, we specified the 
model 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒!)*+ = 𝜇 + 𝑢,[!] + 𝑣/[!] +𝑤,[!],/[1] +
𝑥2[!] + 𝜀!)*+   (4) 

Where 𝑢,[.]~N(0, 𝜎01)  captures prompt-level 
variance, 𝑣2[.]~N(0, 𝜎31)	  the bucket (entropy) 
effect, 𝑤,[.],2[4]~N(0, 𝜎031 )	  their interaction, 
𝑥5[.]~N(0, 𝜎6	1) and the essay (test-taker) facet, and 
𝜀.89:~N(0, 𝜎;	1)  residual error. From each model 
we extracted the variance components 
𝜎01, 𝜎31, 𝜎031 , 𝜎6	1, 𝜎;	1  via VarCorr(), supplying the 
inputs for subsequent analytic D-study 
computations. 

D-Study Design 

Using those variance components, we predicted the 
generalizability coefficient G without refitting: 

𝐺 = 3"#$"%"&'#(
)

3"#$"%"&'#(
) 4

*+(,-+":/01'#"
)

2/01'#"$
4

*(#$!30&4
)

2/01'#"$×2#×2$

   (5) 

Here 𝑛𝑏𝑢𝑐𝑘𝑒𝑡𝑠 , 𝑛𝑒 , and 𝑛𝑠 are the numbers of 
entropy buckets, encoders, and seeds. Two sweeps 
were performed: 

Small-only ensembles: All 56k8 × 5
6
s8 

combinations of k=2–6 small encoders and s=1–3 
seeds (399 runs) identified the minimal small-
model sets achieving G≥0.85. 

Mixed small + medium ensembles: For each 
subset of 1–4 medium encoders, we incrementally 
added 1–6 small encoders under 1–3 seeds (5,401 
runs), halting further expansion once a medium–
seed pair first attained G≥0.95. 

Large-model exploration: Finally, we considered 
ensembles incorporating at least one large encoder 
(BERT-Large, RoBERTa-Large, GPT-2 Large, 
DeBERTa-V3 Large), applying a second early‐stop 
rule: after two distinct large-inclusive sets 
surpassed G≥0.95, no further large‐model sweeps 
were conducted. 
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These analytic D‐study procedures rigorously chart 
reliability gains against computational expense, 
guiding selection of AES ensembles that meet 
dependability targets with minimal overhead. 

4 Results 

1. Overall Reliability Ceiling 

The fully crossed G-study design—incorporating 
all 14 encoders, three seed initializations, and five-
fold cross-validation—yielded near-perfect 
generalizability coefficients across entropy strata. 
Substituting n6 = 14 , nA = 3 , and n3BCD6EA = 3 
into the analytic D-study formula produced 

Low-entropy bucket: G=0.990 

Mid-entropy bucket: G=0.989 

High-entropy bucket: G=0.989 

An overall average of G≈0.99 confirms that 
exhaustive model diversity and replication 
effectively eliminate measurement error, 
establishing an upper bound against which all 
reduced‐complexity ensembles are benchmarked. 

After experimenting with different K values under 
a minimum cell-size constraint, we determined that 
only by requiring at least seven essays per prompt–
bucket cell could the equal-variance algorithm 
produce three strata. Higher K values violated this 
constraint, and K = 2 proved too coarse for reliable 
variance estimation. With the minimum cell size 
set to seven, the algorithm converged on K = 3 
buckets containing 451, 479, and 457 essays (Table 
2), which we label as low, medium, and high 
complexity based on their mean standardized-
entropy (z) scores. Table 3 details each prompt’s 
essay counts within these buckets, confirming an 
even distribution of texts across topics and 
complexity levels. 

Figure 6 illustrates that the holistic score 
distributions are virtually identical across low, 
medium, and high entropy strata. Each bucket 
peaks in the mid‐score range (2–4) and tapers 
symmetrically toward the extremes (1 and 6), with 
no stratum showing a disproportionate 
concentration at any particular score band. This 
consistency confirms that our equal‐variance 
bucketing preserved the overall score profile: 
textual complexity, as indexed by standardized 
entropy, does not systematically bias the 
distribution of human‐assigned scores. 

2. G-Study Facet Contributions 

Despite this high ceiling, the initial G-study 
decomposition (Table 4) reveals that genuine test-
taker differences remain the predominant source of 
score variability. Across all three entropy strata, the 
essay/test-taker component 𝜎F1  accounted for 
approximately 60–65 % of total variance. Residual 
error 𝜎G1contributed another 11–14 %. In contrast, 
encoder choice 𝜎H1 explained only 12–18 %, seed 
initialization 𝜎I1  2–4 %, and fold assignment 𝜎J1 
less than 1 %. Interaction terms—encoder × seed, 
encoder × fold, seed × fold—were effectively zero 
(Table 4). 

Thus, although true-score variance dominates AES 
reliability, the nontrivial contributions of model 
architecture and random seed justify their explicit 
modeling in both G- and D-study phases. 

3. Small-Only D-Study: Trading Seeds for Model 
Diversity 

A full sweep of the six “small” transformers 
(ELECTRA Small (Discriminator), DistilBERT-
base (uncased), DeBERTa-v3-small, GPT-2 
(small), MiniLM-L6-uncased, MobileBERT-
uncased) crossed with 1–3 seeds (399 designs with 
354 of them obtained G values≥0.85) revealed 
clear trade-offs between architectural diversity and 
seed replication (Table 5; Figure 7). Under a single-
seed design, two- and three-encoder ensembles fail 
to reach G=0.85, but four small encoders just meet 
it (G≈0.851), and adding one or two more models 
raises reliability to approximately 0.868 and 0.882, 
respectively. Introducing a second seed yields 
larger gains: three encoders under two seeds 
already surpass G=0.85, and six encoders exceed 
0.90. With three seed replications, even the 
minimal two-model pairing (GPT-2-small + 
MobileBERT) reaches G≈0.921; adding a third 
model pushes G to roughly 0.942, and four-model 
ensembles climb to about 0.952. Beyond four 
encoders, marginal improvements taper off—five- 
and six-model ensembles with three seeds achieve 
G≈0.958 and 0.962, respectively (Figure 8). 

Figure 9 renders these results as smooth surfaces in 
the (number of encoders, number of seeds, G-
coefficient) space. All three seed planes rise steeply 
from two to three encoders before plateauing, 
indicating diminishing returns on adding more 
models. Conversely, each additional seed shifts the 
entire surface upward by an almost constant 
amount, confirming that seed replication is a more 
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efficient lever for boosting reliability once a 
modest ensemble is in place. In resource-
constrained settings (e.g., limited GPU memory), 
two or three encoders with three seeds offer the 
fastest route to G ≥ 0.85; where parallelism is 
abundant, larger ensembles can edge closer to the 
reliability ceiling but with diminishing payoff. 

4. Mixed D-Study: Leveraging Medium-Sized 
Models 

To explore hybrid configurations, we swept 5,401 
designs combining 1–4 medium transformers, 1–6 
small transformers, and 1–3 seed replications. As 
in the small-only study, an early-stop rule was 
enforced: for each medium–seed pairing, 
additional small models were added only until 
G≥0.85 was first reached (see Table 8). We then 
ranked each ensemble by a simple “resource” 
metric (number of models + number of seeds) to 
identify the most cost-effective solutions (Table 9). 

Remarkably, a two-model hybrid—one medium 
encoder (BERT-Base), one small encoder 
(DistilBERT-base), and two seeds (resource = 4)—
achieved G≈0.895, exceeding every small-only 
design at the same resource level. This single-
medium + single-small configuration appears as 
the top entry in Table 9. Although adding more 
small models or seeds continued to raise G, the 
incremental benefit per added compute unit 
diminished rapidly. 

Encouraged by these mid-range gains, we briefly 
evaluated large transformers under a second early-
stop: once two large-inclusive ensembles surpassed 
G≥0.95, we terminated further exploration on cost-
benefit grounds. The reliability uplift from large 
models (≈1–2 percentage points) did not justify 
their 5–10× higher FLOPs, memory footprint, and 
energy cost. 

Together, Tables 8 and 9 illustrate that compact 
mixed ensembles—anchored by a single medium 
transformer, a single small transformer, and 
minimal seed replication—deliver the highest 
generalizability per unit of compute. 

5 Discussion 

The D-Study sweeps reveal a clear trade-off 
between reliability and computational cost. Small-
only configurations must marshal at least five 
combined encoder-and-seed resources to surpass a 
generalizability coefficient of 0.85, whereas a 

compact hybrid ensemble of one medium 
transformer, one small transformer, and two seed 
replications achieves approximately 0.90 with only 
four resources. This efficiency frontier underscores 
that thoughtfully chosen model diversity and 
minimal replication can meet rigorous reliability 
thresholds while markedly curbing FLOPs, GPU 
memory, and energy consumption. 

Our G-Study also confirms that large 
transformers—despite reducing encoder-facet 
variance by just one to two percentage points—
incur disproportionately high compute and 
environmental costs, making medium-sized 
architectures the practical backbone for high-stakes 
scoring. By treating each essay (and thus each 
examinee) as the object of measurement, the 
mixed-effects framework captures both content 
and ability variance in a single term, aligning our 
dependability estimates with established 
psychometric practice. Moreover, entropy-
stratified bucketing ensured that low-, mid-, and 
high-complexity texts contributed equally to 
variance-component estimation, guarding against 
bias from essay length or richness and validating 
the fairness of our reliability analyses. 

Looking ahead, enriching our simple resource 
metric with actual FLOPs, GPU-hours, and energy 
use would enable truly multi-objective D-studies. 
Exploring adaptive or continuous stratification and 
designs with multiple essays per examinee could 
further disentangle content from ability variance 
and broaden applicability beyond holistic scoring. 

6 Conclusion 

This study integrates standardized Shannon-
entropy stratification within a Generalizability-
Theory framework to guide efficient AES 
ensemble design. A fully crossed G-Study (14 
encoders × 3 seeds × 5 folds) quantified error 
sources across prompts, entropy strata, encoder 
models, and seed initializations. Analytic D-Study 
formulas then predicted generalizability 
coefficients for over 5,800 hypothetical ensembles 
without refitting models, revealing that compact 
hybrids of medium and small transformers with 
limited seed replication achieve target reliability at 
minimal cost. By balancing psychometric rigor 
with computational pragmatism, our approach 
offers a principled roadmap for deploying reliable, 
fair, and sustainable AES systems across diverse 
writing complexities.  
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A Appendices 

 

 
  

Category Model Hidden 
Size # Layers # Heads Approx. 

Parameters 
Max Seq. 
Length 

Small 

ELECTRA Small 
(Discriminator) 256 12 4 14 M 512 

DistilBERT-base (uncased) 768 6 12 66 M 512 

DeBERTa-v3-small 768 6 12 86 M 512 
GPT-2 (small) 768 12 12 124 M 1024 
MiniLM-L6-uncased 384 6 12 22 M 512 
MobileBERT-uncased 512 24 4 25 M 512 

Medium 

BERT-base-uncased 768 12 12 110 M 512 
RoBERTa-base 768 12 12 125 M 512 

Longformer-base-4096 768 12 12 149 M 4 096 

GPT-2 (medium) 1 024 24 16 355 M 1024 

Large 

BERT-large-uncased 1 024 24 16 340 M 512 
RoBERTa-large 1 024 24 16 355 M 512 
GPT-2 (large) 1 280 36 20 774 M 1024 
DeBERTa-v3-large 1 024 24 16 304 M 512 

Table 1 General Information Comparison of All (14) Encoder Models  used 

 

Prompt 
Entropy Bucket 
L M H 

Car-free cities 12 32 152 
Distance learning 95 80 43 
Does the electoral college 
work? 90 78 37 

Driverless cars 50 81 58 
Exploring Venus 38 78 70 
Facial action coding system 62 71 84 
Summer projects 104 59 13 
Total 451 479 457 

Table 3 Essay Distribution in Entropy Bucket by 
Prompt 

 

Bucket 𝜎5E 𝜎5S 𝜎5F 𝜎5T 𝜎5ExS 𝜎5ExF 𝜎5SXF 𝜎5Residual 

Low 0.00479 0 1.34 × 10⁻⁷ 1.231 0 0 0 0.163 
Mid 0.00019 1.7 × 10⁻¹⁰ 0 1.274 0 0 0 0.157 
High 0.00051 5.4 × 10⁻⁶ 0 0.954 0 0 3.1 × 10⁻9 0.164 

Table 4 Variance Components and Ceiling-G Coefficients by Entropy Bucket 

 

 

 

 

 

Bucket N Mean Range SD 

Low 451 1.131 0.909~1.237 0.048 

2 479 1.176 1.100~1.276 0.040 

3 457 1.216 1.125~1.331 0.038 

Table 2. Entropy Bucketing Result using the Equal 
Variance Method 
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Seeds Encoders Encoder Set G-Coefficient 

1  

3 DistilBERT-base , GPT-2 (small) , MobileBERT-uncased 0.866 

4 DistilBERT-base , DeBERTa-v3-small  , GPT-2 (small) , 
MobileBERT-uncased 0.893 

5 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3-
small  , GPT-2 (small) , MobileBERT-uncased 0.909 

6 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3-
small  , GPT-2 (small) , MiniLM-L6-uncased, MobileBERT-uncased 0.920 

2  

2 DistilBERT-base , MobileBERT-uncased 0.893 

3 DistilBERT-base , GPT-2 (small) , MobileBERT-uncased 0.922 

4 DistilBERT-base , DeBERTa-v3-small  , GPT-2 (small) , 
MobileBERT-uncased 0.937 

5 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3-
small  , GPT-2 (small) , MobileBERT-uncased 0.946 

6 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3-
small  , GPT-2 (small) , MiniLM-L6-uncased, MobileBERT-uncased 0.951 

3 

2 GPT-2 (small) , MobileBERT-uncased 0.921 

3 DistilBERT-base , GPT-2 (small) , MobileBERT-uncased 0.942 

4 DistilBERT-base , DeBERTa-v3-small  , GPT-2 (small) , 
MobileBERT-uncased 0.952 

5 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3-
small  , GPT-2 (small) , MobileBERT-uncased 0.958 

6 ELECTRA Small (Discriminator) , DistilBERT-base , DeBERTa-v3-
small  , GPT-2 (small) , MiniLM-L6-uncased, MobileBERT-uncased 0.962 

Table 6. Best G ≥ 0.85 Designs By Seed And Encoder Count in Small-encoder Ensemble  

 

# Encoders # Seeds Mean G 
2 3 0.872 
3 2 0.860 
4 1 0.851 

Table 5. Minimal small-only configurations achieving G ≥ 0.85 
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Medium Encoder # of M 
Encoders Small Encoder # of S 

Encoders 
# of 

seeds G 

BERT-base-uncased , 
RoBERTa-base , 
Longformer-base-4096 , 
GPT-2 (medium) 

4 

ELECTRA Small (Discriminator) , 
DistilBERT-base , DeBERTa-v3-small , 
GPT-2 (small), MiniLM-L6-uncased , 
MobileBERT-uncased 

6 3 0.968 

BERT-base-uncased , 
RoBERTa-base , 
Longformer-base-4096 3 

ELECTRA Small (Discriminator) , 
DistilBERT-base , DeBERTa-v3-small , 
GPT-2 (small), MiniLM-L6-uncased , 
MobileBERT-uncased 

6 3 0.968 

BERT-base-uncased , 
RoBERTa-base , GPT-2 
(medium) 3 

ELECTRA Small (Discriminator) , 
DistilBERT-base , DeBERTa-v3-small , 
GPT-2 (small), MiniLM-L6-uncased , 
MobileBERT-uncased 

6 3 0.968 

BERT-base-uncased , 
Longformer-base-4096 , 
GPT-2 (medium) 3 

ELECTRA Small (Discriminator) , 
DistilBERT-base , DeBERTa-v3-small , 
GPT-2 (small), MiniLM-L6-uncased , 
MobileBERT-uncased 

6 3 0.967 

BERT-base-uncased , 
RoBERTa-base 

2 

ELECTRA Small (Discriminator) , 
DistilBERT-base , DeBERTa-v3-small , 
GPT-2 (small), MiniLM-L6-uncased , 
MobileBERT-uncased 

6 3 0.967 

Table 9. Mixed Designs with Top 5 G-coefficients 

 

N of Encoders Small Encoders Seeds G 
1 DistilBERT-base 3 0.872 
2 GPT-2 small; MobileBERT-uncased 3 0.921 
3 DistilBERT-base; GPT-2 small; MobileBERT-uncased 3 0.942 
4 DistilBERT-base; DeBERTa-V3 small; GPT-2 small; MobileBERT-

uncased 
3 0.952 

5 ELECTRA Small (Discriminator) ; DistilBERT-base; DeBERTa-V3 
small; GPT-2 small; MobileBERT-uncased 

3 0.958 

6 ELECTRA Small (Discriminator) ; DistilBERT-base; DeBERTa-V3 
small; GPT-2 small; MiniLM-L6-uncased; MobileBERT-uncased 

3 0.962 

Table 7 Best Small-encoder Ensemble Designs by Number of Models. 

Smal 
Medium Encoder # of M 

Encoders Small Encoder # of S 
Encoders # of seeds G 

BERT-base-uncased 1 DistilBERT-base (uncased) 1 2 0.895 

BERT-base-uncased 1 DistilBERT-base (uncased) 1 2 0.895 

BERT-base-uncased 1 DistilBERT-base (uncased) 1 2 0.895 

BERT-base-uncased 1 GPT-2 (small) 1 2 0.894 

BERT-base-uncased 1 GPT-2 (small) 1 2 0.894 
 
Table 8.  Top 5 G ≥ 0.85 Mixed Ensemble Designs with Fewest Resources 
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Category  Model Train 

Embedding 
Test 

Embedding 
Full 3×5 CV  
& Merge 

Small 

 ELECTRA Small 
(Discriminator) 0 h 9 m 29 s 0 h 1 m 3 s 0 h 12 m 45 s 

DistilBERT-base 0 h 10 m 18 s 0 h 1 m 10 s 0 h 17 m 42 s 

DeBERTa-v3-small 0 h 31 m 53 s 0 h 3 m 30 s 0 h 41 m 14 s 

GPT-2 (small) 0 h 41 m 54 s 0 h 4 m 31 s 0 h 52 m 46 s 

MiniLM-L6-uncased 0 h 4 m 50 s 0 h 0 m 32 s 0 h 8 m 49 s 

MobileBERT-uncased 0 h 21 m 12 s 0 h 2 m 15 s 0 h 28 m 10 s 

Medium 

 BERT-base-uncased 0 h 21 m 6 s 0 h 2 m 27 s 0 h 29 m 48 s 

RoBERTa-base 0 h 21 m 18 s 0 h 2 m 25 s 0 h 30 m 8 s 

Longformer-base-4096 5 h 40 m 48 s 0 h 38 m 3 s 6 h 24 m 32 s 

GPT-2 (medium) 2 h 2 m 50 s 0 h 13 m 14 s 2 h 24 m 24 s 

Large 

 BERT-large-uncased 1 h 4 m 41 s 0 h 7 m 17 s 1 h 20 m 10 s 

RoBERTa-large 1 h 10 m 46 s 0 h 7 m 58 s 1 h 27 m 23 s 

GPT-2 (large) 4 h 29 m 16 s 0 h 31 m 11 s 5 h 11 m 33 s 

DeBERTa-v3-large 2 h 58 m 33 s 0 h 20 m 48 s 3 h 28 m 12 s 

Table 10. Wall-Clock Times for Embedding and 3×5 Cross-Validation Scoring of 14 Transformer Encoders 
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Figure 1. Descriptive Statistics of Essays in Training Set and the Test-takers’ Demographic Information 
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Figure 2. Descriptive Statistics of Essays in “Holdout_evaluation_set” and the Test-takers’ Demographic 

Information 
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Figure 3. Comparison of Scatterplots of Word Count vs. Raw Shannon Entropy and Standardized Entropy 

 

Figure 4. Scatterplot of Score Sample Variance and Standardized Entropy 
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Figure 6. Histogram of Essay Score Distribution by Entropy Bucket 

 

 

Figure 5. Scatterplot of Standardized Entropy vs. Mean Predicted Scores 
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Figure 7. Mean G-coefficients by Number of Seeds in Small-encoder Ensemble Designs 

 

 

Figure 8. Mean G-coefficients by Number of Small-encoders in Small-encoder Ensemble Designs 
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       Figure 9. 3-D Plot of Mean C-cefficients vs. Number of Encoders and Seeds  
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