@inproceedings{thomas-etal-2025-beyond,
title = "Beyond Agreement: Rethinking Ground Truth in Educational {AI} Annotation",
author = "Thomas, Danielle R and
Borchers, Conrad and
Koedinger, Ken",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.37/",
pages = "345--351",
ISBN = "979-8-218-84228-4",
abstract = "Humans are biased, inconsistent, and yet we keep trusting them to define ``ground truth.'' This paper questions the overreliance on inter-rater reliability in educational AI and proposes a multidimensional approach leveraging expert-based approaches and close-the-loop validity to build annotations that reflect impact, not just agreement. It{'}s time we do better."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thomas-etal-2025-beyond">
<titleInfo>
<title>Beyond Agreement: Rethinking Ground Truth in Educational AI Annotation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danielle</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Thomas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Conrad</namePart>
<namePart type="family">Borchers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ken</namePart>
<namePart type="family">Koedinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>Humans are biased, inconsistent, and yet we keep trusting them to define “ground truth.” This paper questions the overreliance on inter-rater reliability in educational AI and proposes a multidimensional approach leveraging expert-based approaches and close-the-loop validity to build annotations that reflect impact, not just agreement. It’s time we do better.</abstract>
<identifier type="citekey">thomas-etal-2025-beyond</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.37/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>345</start>
<end>351</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Agreement: Rethinking Ground Truth in Educational AI Annotation
%A Thomas, Danielle R.
%A Borchers, Conrad
%A Koedinger, Ken
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F thomas-etal-2025-beyond
%X Humans are biased, inconsistent, and yet we keep trusting them to define “ground truth.” This paper questions the overreliance on inter-rater reliability in educational AI and proposes a multidimensional approach leveraging expert-based approaches and close-the-loop validity to build annotations that reflect impact, not just agreement. It’s time we do better.
%U https://aclanthology.org/2025.aimecon-main.37/
%P 345-351
Markdown (Informal)
[Beyond Agreement: Rethinking Ground Truth in Educational AI Annotation](https://aclanthology.org/2025.aimecon-main.37/) (Thomas et al., AIME-Con 2025)
ACL
- Danielle R Thomas, Conrad Borchers, and Ken Koedinger. 2025. Beyond Agreement: Rethinking Ground Truth in Educational AI Annotation. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers, pages 345–351, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).