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Abstract

Only a limited number of predictors can be
included in a generalized linear mixed
model (GLMM) due to estimation
algorithm divergence. This study aims to
propose a machine learning based
algorithm (e.g., mixed-effects random
forest) that can consider all predictors

without the convergence issue and
automatically ~ searches for optimal
GLMMs.

1 Introduction

Educational data typically have a hierarchical
structure (Bryk & Raudenbush, 1989; Woltman et
al., 2012) due to their sampling scheme. For
example, schools in a nation are first selected, and
then students in the schools are sampled. As a
result, students are nested in schools, schools are
nested in nations. Consequently, students from the
same school tend to be correlated among
themselves (school effect or random effect). A
generalized linear mixed model (GLMM) is
typically used in such a data set.

GLMMs estimate both fixed and random
effects, leading to accommodating school effects.
However, GLMMs frequently fail to converge
when they need to consider many predictors and
their interactions (Bates et al., 2015). To solve the
convergence issue, previous research typically
considered only a small subset of predictors based
on literature review or applying regularization
techniques such as Lasso (Tibshirani, 1996).
Nevertheless, both approaches have limitations.
The former case may exclude some predictors that
have a large influence on the outcome, while the
latter does not account for random effects.

To address the issues, this study aims to develop
an algorithm that can automatically rank all
predictors of statistical importance based on the
whole dataset without convergence problems and
then search for optimal GLMMs according to the
ranking. The algorithm applies a machine learning
method, called mixed-effects random forest
(MERF; Hajjem et al., 2014), to rank all predictors
according to their statistical importance in a mixed-
effects model. Then, the algorithm searches for a
random intercept model with significant predictors
sequentially based on the ranking provided by
MEREF. Next, it searches for significant interaction
terms. Lastly, random slopes are explored and
possibly added to the models.

Although the proposed algorithm does not
directly account for substantive meaning of each
predictor, it does provide candidate GLMMs
recommended. Thus, the proposed algorithm has
the potential to reduce the time and effort otherwise
required by researchers to identify optimal
GLMMs.

2 Theoretical framework

2.1 Generalized Linear Mixed Models

(GLMMs)

The generalized linear model (GLM) (McCullagh
& Nelder, 1989) assumes that all observations are
independent, while the generalized linear mixed
model (GLMM) (Breslow & Clayton, 1993) allows
dependency among subjects in the same group.
GLMM can handle data hierarchy by including
random effects for group dependency (e.g., school
effects. The linear mixed model (LMM), also
known as hierarchical linear = modeling
(Raudenbush & Bryk, 2002) or multilevel
modeling (Goldstein, 2011), is a special case of the
GLMM, where the response variable is continuous.
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The LMM estimates both fixed effects and random
effects and has the form as shown in Equation (1),

Y =XB+7Zb+e, (1)

where € ~ N(0,0%1), b ~ N(0,G), and € and b are
independent from each other. Here G is a block-
diagonal covariance matrix.

The first two terms of the right-hand side of
Equation (1) represent fixed- and random-effects
parts, respectively. X is the n x (K + 1) matrix of
fixed effects from predictors (here n is the number
of observations and K is the number of predictors),
B isthe (K + 1) dimensional fixed effect parameter
vector, Z is the design matrix of J groups (schools),
b is random effect vector, and ¢ is the (level-1)
residual vector. The vector b for a random intercept
model is Jx1 vector of random intercept (by;) for
each group, where by;~N(0,7%). For a random
intercept and a random slope model, vector b is a
Jx2 vector of random effects for each group, where

by
b = <b°’)~N(0,G), and Z is an nx2J block-
1j

diagonal matrix, for each subject, including 1 for
their group’s random intercept (by;) and Z for their
group’s random slope (b ;). It can be represented as
a conditional model, as illustrated in Equation (2),

u=E(Y|b) = XB + Zb. 2)

The generalized linear mixed model (GLMM)
extends LMM to accommodate non-continuous
responses, such as binary or categorical responses
and the models are denoted as Equation (3),

g(w) = XB + 2b, (3)

where g() is a monotonic increasing and
differentiable link function. For example, the logit
function widely serves as a link function for binary
responses.

The correlation between individuals (students)
within the same group (school) is called the
intraclass correlation coefficient (ICC) which
measures the similarity of within-group individuals
(Raudenbush & Bryk, 2002). In a random intercept
model, the ICC is calculated by between-group
variance (t2) divided by total variance, which is the
sum of between-group variance (t2) and within-
group variance (o2 ). Since the ICC is the
proportion of total variance due to group
differences, higher ICC implies larger group
difference.

2.2 Machine learning method: MERF

A machine learning method, RF is a tree-based
ensemble method that aggregates a cluster of
random decision trees. Unlike standard RF
(Breiman, 2001) that considers fixed effects only,
MERF (Hajjem et al., 2014) is also capable of
taking random effects into account, as shown in
Equation (4),

Y=fX)+Zb +¢, “4)

where f(X) is a general and unspecified fixed-
effects part. MERF is applied as follows: After
calculating the fixed part for the predictors with
initial value for ﬁ i, 0, and G, the algorithm takes
bootstrap samples from the training set to build a
forest of trees. The predicted fixed part for
observation i in group j, f (X; i), is obtained with
the training set of trees in the forest. Next, it
computes Ej with the updated estimate of the
random part of Equation (4) and updates the
variance components & and G . The algorithm
keeps repeating those steps until convergence. See
Hajjem et al. (2014) for detailed explanation.

RF-based methods rank all predictors by their
importance in prediction. Specifically, the
importance function of LongituRF package
(Capitaine, 2020) in R prints two measures of
variable importance: the mean decrease of
prediction accuracy when a given variable is
permutated (permutation-based importance) and
the total decrease in node impurity that results from
splits over that variable, averaged over all trees
(node impurity-based importance) (James et al.,
2013). The permutation-based importance criterion
is applied to rank predictors to avoid overfitting.

In the proposed algorithm, the ranking of all
predictors is utilized to support predictor selection,
which serves as a basis of optimal model selection.
By sequentially adding a top-ranked predictor to
the provisionary model, the algorithm performs
predictor selection. Then, based on the predictors
selected, the optimal model is finally identified in
the last step. Since educational large-scale
assessment (LSA) data typically have hierarchical
structures in common, MERF is applied for
supporting predictor selection from LSA data. The
detailed explanation of each step is followed in the
next section.
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3 Automated search
optimal GLMM

algorithm for

In this study, we developed an algorithm to
automatically search for optimal GLMMs for any
large data set with hierarchical structures,
especially LSA data. It mimics how experienced
researchers identify the best-fitting GLMM. This
algorithm utilizes forward selection (Hastie et al.,
2017), which begins with a model containing no
predictors, and then adds predictors to the model,
one at a time, until complex model with the newly
added predictor is not significantly different from
simpler model. Unlike traditional forward selection
that adds the predictor that gives the greatest
additional improvement to the fit to the model, we
select the predictor based on the ranking of their
importance in prediction sorted by MERF. The
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Figure 1: Flowchart of the automated search
algorithm.

proposed algorithm contains three main steps,
preparation, predictor selection, and model
selection, as demonstrated in Figure 1.

3.1 Preparation

In the preparation step, data from schools with
fewer than 20 students are removed. Next, the size
of school effects (i.e., ICC) is measured to decide
whether GLMM is needed or not. If the ICC is less
than .1, the GLMM is not needed. If the ICC is
larger than .1, a random intercept model with no
predictors, called the null model, is built. Both the
minimum school size and the magnitude of the [CC
are tentatively decided, yet they can be set by user.

3.2 Predictor selection

In the predictor selection stage, MERF is applied to
rank all predictors of statistical importance,
specifically mean decrease of prediction accuracy,
from the highest to the lowest. Especially, the three
highest ranked predictors are denoted essential
predictors, V1, V2, and V3, and further utilized to
the selection of possible interaction term(s).

Secondly, the top-ranked predictor is selected
among all predictors that are not in the provisional
model and added to the model. If the model doesn’t
converge, the algorithm chooses the next top-
ranked predictor instead. Next, a log-likelihood
ratio test is performed to determine whether the
complex model with the newly added predictor is
significantly different from the simpler model.
Note that we use forward selection, a greedy
algorithm, producing a nested sequence of models.
If the complex model with the added predictor is
significantly different from the simpler model, the
predictor is added to the provisionary model;
otherwise, stop predictor selection and fit the
GLMM, a random intercept model with all
significant predictors. This model is referred to as
a base model.

Then, the algorithm searches for significant
interaction terms. Three interaction terms of the
essential predictors (i.e., VI:V2, VI:V3, and V2:V3)
are sequentially added to the provisionary model
and tested their significance. If the complex model
with the newly added interaction term is
significantly different from the simpler model, add
the term to the model; otherwise, stop the
procedure and identify the current model as the
preliminary model.
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3.3 Model selection

In the model selection step, the proposed algorithm
aims to identify the optimal GLMM. First, it
systematically tests each of the significant
predictors in the base model as a random slope. To
test the number of random effects, e.g., whether a
random intercept and random slope model is
significantly different from a random intercept
model, a likelihood ratio test with mixture p-value
(Self & Liang, 1987; Stram & Lee, 1994) is
conducted.

To be specific, the top-ranked significant
predictor is selected and a random slope for the
predictor is added to the preliminary model. Then,
whether the complex model with the newly added
random slope is significantly different from the
simpler model (preliminary model) is tested. If it is
significant, the random slope is added to the
preliminary model. Adding the next ranked
significant predictors to the model and testing its
significance are repeated until a newly added
random slope is not significant; otherwise, stop and
identify the current model as the optimal GLMM.

The processes of optimal model selection are
summarized as follows.

1. Start with the null model.

2. Rank all predictors based on their
importance using machine learning
methods (e.g., MERF).

3. Select the top-ranked predictor among all
predictors that are not in the provisional
model.

4. Add this predictor to the (provisional)
model. If the model doesn’t converge,
choose the next top-ranked predictor, and
so on. Conduct a chi-square difference test
to determine whether the model with the
newly added predictor is significantly
different from the simpler model.

5. If there is a significant difference, add the
predictor to the current model; otherwise,
remove the predictor.

6. Repeat steps 3 to 5 until a newly added
predictor is not significant.

7. Add an interaction term of the top-3
ranked predictors, called essential
predictors, to the model one-at-a time and
test their significance.

8. [If there is a significant difference, add the
interaction to the model; otherwise,
remove the interaction term.

9. Repeat steps 7 to 8 until a newly added
interaction term is not significant.

10. Select the top-ranked significant predictor
and add a random slope for the predictor to
the model. Conduct a likelihood ratio test
with mixture p-value whether the model
with the newly added random slope is
significantly different from the simpler
model.

11. If there is a significant difference, add the
slope to the current model; otherwise,
remove the slope.

12. Repeat steps 10 and 11 until a newly added
random slope is not significant.

13. Identify the current model as the optimal
GLMM.

4. A real data example

We illustrate how the proposed algorithm can be
applied to explore optimal GLMMs using real LSA
data, the Trends in International Mathematics and
Science Study (TIMSS). Specifically, the U.S.
eighth grade student data collected in 2019 is
utilized to explore optimal GLMM on their
achievement scores in mathematics. Note that this
section does not intend to compare the proposed
algorithm’s performance with other existing
methods, but to illustrate how the algorithm
automatically searches for optimal GLMMs from
LSA data with hierarchy step by step. As far as we
know, there are no existing methods to perform
such a thing so far. Data was already cleaned (e.g.,
missing data imputation, etc.).

4.1 Preparation

Starting from 232 predictors (independent
variables) of 8,698 students, the algorithm
examines the schools with less than the minimum
number of students and calculates the ICC value to
decide whether GLMM is necessary. The
minimum number of students and the ICC cut-off
values are temporarily set to 20 and 0.1,
respectively. We find that there are 44 schools with
fewer than 20 students, leading that 600
observations being deleted. The ICC value is 0.44,
implying that 44% of total variance in students’
achievement scores in mathematics is explained by
school differences. Thus, GLMM is needed.

Next, the algorithm fits a random intercept
model without any predictors, also denoted as null
model (Equation 5),
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i=1,2.,[,] =229 ,  by~N(0,4027) ,
£;j~N(0,5,239), where y;; referring to students’
achievement scores in mathematics.

4.2 Predictor selection

In this step, the algorithm aims to search for the
best base model, which is a random intercept model
including all significant predictors. First, a machine
learning method, MERF, ranks all 232 predictors
based on their importance. We set hyper-
parameters: the number of trees (ntree) is set to
2,000, and the number of variables randomly
sampled as candidates at each split (mzry) is to 73,
the floor of the total number of predictors divided
by 3, as recommended by Breiman (2001). Note
that as ntree gets larger, the more stable predictive
error can be obtained, at the expense of
computational efficiency.

The importance plot of the top-30 ranked
predictors obtained by MERF is illustrated in
Figure 2. Their names are abbreviated as V1 to V30
by their ranks and the original names are presented
in Table 1.

Variable importance

A% | 114.28
V2 ] 80.01

V3 ] 75.33

V4 ] 71.73

V5 ] 56.67

V8 40.29
V9 40.27

vor [ 2512
v28 [ ] 2466

va0 [ ] 2407

I I I [ | I I
0 20 40 60 80 100 120

Figure 2: Predictor importance plot.

Then, all the predictors are tested for their
significance one-at-a time. The algorithm fits the
base model with 18 significant predictors (V1 to

No. Variable No. Variable
Vi BSBG04 Vié6 BSBM18F
V2 BSBM19C V17 BSBMI18E
V3 BCBGO3A VI8 BSBM15
V4 BSBM19A V19 BSBS24C
V5 BSBGO07 V20 BCBGO06B
Vo6 BSBM19B V21 | BCDGTIHY
\4) BSBM19F V22 BCBGO03B
V8 BSBM19H V23 | BSBM26AA
V9 BCDGSBC V24 BSBM16I
V10 | BSDGEDUP | V25 BSBS27BB
Vi1 BSBM18C V26 BSBEO3E
V12 BSBM19D V27 BSBS43BB
V13 BSDAGE V28 BSBEO3F
Vi4 BSBS24B V29 BSBM18D
V15 BSBS24G V30 BSBEO1A

Table 1: Predictor names.

V18), including two school-level predictors. A
likelihood ratio test is conducted to compare the
null model with the base model. The result
indicates that the addition of the predictors
significantly improved model fit, Ay?(18) =
3366.70, p < .001 (see, Table 2). The model’s R?
and R% are 0.33 and 0.67, respectively. Note that
V9 is no longer significant in the base model.

Model df AIC  logLik Ay? p
Null 3 93095 -46544
Base 21 89764 -44861 3367 <.001
Prelim- 22 89759 -44858 7 <.01

Table 2: Model comparison (step 2).

Next, the algorithm sequentially adds the
interaction terms of the essential predictors. The
result of likelihood test shows that an interaction
term, V1:V2, significantly improved model fit,
Ax?*(1) = 6.77, p < .01. We denote the model with
the added interaction term as the preliminary
model. The models’ R? at both levels are also
slightly improved.

4.3 Model selection

Based on the preliminary model in the previous
step, the algorithm searches for the optimal random
slopes. As a result, a random slope for ¥/ is added
to the preliminary model. The likelihood ratio test
with mixture p-value indicates that the complex
(called intermediate) model with the newly added
slope is significantly different from the simpler
(preliminary) model, Ay?(2) = 56.69, p (mixture)
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Model df AIC  logLik Ay? p
Prelim- 22 89759 -44858 7

Interim- 24 89707 -44829 57 <001
Optimal 27 89672 -44809 41 <001

Table 3: Model comparison (step 3).

<.001 (see, Table 3). Note that the interaction term
(V1:172) is no longer significant.

Then, a random slope for V2 is newly added to
intermediate model and the likelihood test with
mixture p-value also demonstrates that the newly
added slope significantly improved model fit,
Ax%(3) = 41.00, p (mixture) <.001 (see, Table 3).
Since the random slope for V3 is not significant, we
stop model searching and the provisionary model
is identified as the optimal GLMM.

The optimal GLMM has a random intercept, 18
predictors (two school-level predictors, 16 student-
level predictors), an interaction term, and two
random slopes for '/ and V2, as shown in Equation
(0),

yij = 603 +9(V1);; + 6(V2); — 17(V3); —

12(V4);; + 7(V5);; + 5(V6);; — 3(V7);; +
5(V8); — 4(V9); + (V10);; + 5(V11);; —

3(V12);; — 11(V13);; + 5(V14);; + 6(V15);; +

3(V16);; + 2(V17);; — 8(V18),; + (V1);; X
(V2)i; + by j(V1); + byj(V2)5 + boj + €. 6)

i=12,..,1I;,] =229, ¢&;~N(0,3381),

bo, 0 2080 — -

bij | = bj~N (0),6 = (—178 52 — ) :

b,; 0 —152 28 48
Note that the interaction term (V1:/2) is no longer
significant in the optimal GLMM. The proposed
algorithm is likely to find slightly different optimal
GLMM, due to randomness of predictors’
importance ranking obtained by MERF. A user can

ensure consistent results across runs by setting a
random seed.

5. Scientific Importance

It is crucial for researchers to build an adequate
optimal model to make valid statistical inferences.
Identifying the best-fitting GLMM is more time-
consuming and complex than finding the best
generalized linear model (GLM), because GLMM
also includes random effects. This algorithm
automatically evaluates a large number of models
during the process of building an optimal GLMM
model. One of the major components is a machine
learning approach (e.g., MERF), which is applied

to sort all predictors based on their importance,
allowing for efficient predictor selection.

In addition, all available predictors from LSA
data can be utilized in searching for optimal
GLMMs without convergence problems using the
algorithm developed here. It also provides a
systematic and transparent process that can be
produced by others, for example, a random
intercept model is fitted, interaction terms of
essential predictors are searched, and then random
slopes are sequentially added to the model. The
proposed algorithm has the potential to reduce the
time and effort required by researchers and to
provide guidelines for exploring the optimal
GLMMs. We further update this algorithm by
taking more considerations into account to explore
best-fitting GLMMs.
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