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Abstract 

Only a limited number of predictors can be 
included in a generalized linear mixed 
model (GLMM) due to estimation 
algorithm divergence. This study aims to 
propose a machine learning based 
algorithm (e.g., mixed-effects random 
forest) that can consider all predictors 
without the convergence issue and 
automatically searches for optimal 
GLMMs.  

1 Introduction 

Educational data typically have a hierarchical 
structure (Bryk & Raudenbush, 1989; Woltman et 
al., 2012) due to their sampling scheme. For 
example, schools in a nation are first selected, and 
then students in the schools are sampled. As a 
result, students are nested in schools, schools are 
nested in nations. Consequently, students from the 
same school tend to be correlated among 
themselves (school effect or random effect). A 
generalized linear mixed model (GLMM) is 
typically used in such a data set.  

GLMMs estimate both fixed and random 
effects, leading to accommodating school effects. 
However, GLMMs frequently fail to converge 
when they need to consider many predictors and 
their interactions (Bates et al., 2015). To solve the 
convergence issue, previous research typically 
considered only a small subset of predictors based 
on literature review or applying regularization 
techniques such as Lasso (Tibshirani, 1996). 
Nevertheless, both approaches have limitations. 
The former case may exclude some predictors that 
have a large influence on the outcome, while the 
latter does not account for random effects. 

To address the issues, this study aims to develop 
an algorithm that can automatically rank all 
predictors of statistical importance based on the 
whole dataset without convergence problems and 
then search for optimal GLMMs according to the 
ranking. The algorithm applies a machine learning 
method, called mixed-effects random forest 
(MERF; Hajjem et al., 2014), to rank all predictors 
according to their statistical importance in a mixed-
effects model. Then, the algorithm searches for a 
random intercept model with significant predictors 
sequentially based on the ranking provided by 
MERF. Next, it searches for significant interaction 
terms. Lastly, random slopes are explored and 
possibly added to the models. 

Although the proposed algorithm does not 
directly account for substantive meaning of each 
predictor, it does provide candidate GLMMs 
recommended. Thus, the proposed algorithm has 
the potential to reduce the time and effort otherwise 
required by researchers to identify optimal 
GLMMs. 

2 Theoretical framework 

2.1 Generalized Linear Mixed Models 
(GLMMs) 

The generalized linear model (GLM) (McCullagh 
& Nelder, 1989) assumes that all observations are 
independent, while the generalized linear mixed 
model (GLMM) (Breslow & Clayton, 1993) allows 
dependency among subjects in the same group. 
GLMM can handle data hierarchy by including 
random effects for group dependency (e.g., school 
effects. The linear mixed model (LMM), also 
known as hierarchical linear modeling 
(Raudenbush & Bryk, 2002) or multilevel 
modeling (Goldstein, 2011), is a special case of the 
GLMM, where the response variable is continuous. 
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The LMM estimates both fixed effects and random 
effects and has the form as shown in Equation (1), 

 𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝜀𝜀,  (1) 

where 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎2𝐼𝐼) , 𝑏𝑏 ~ 𝑁𝑁(0,𝐺𝐺) , and 𝜀𝜀  and 𝑏𝑏  are 
independent from each other. Here G is a block-
diagonal covariance matrix. 

The first two terms of the right-hand side of 
Equation (1) represent fixed- and random-effects 
parts, respectively. 𝑋𝑋  is the 𝑛𝑛 × (𝐾𝐾 + 1)  matrix of 
fixed effects from predictors (here 𝑛𝑛 is the number 
of observations and 𝐾𝐾 is the number of predictors), 
𝛽𝛽 is the (𝐾𝐾 + 1) dimensional fixed effect parameter 
vector, 𝑍𝑍 is the design matrix of J groups (schools), 
𝑏𝑏  is random effect vector, and 𝜀𝜀  is the (level-1) 
residual vector. The vector b for a random intercept 
model is J×1 vector of random intercept (𝑏𝑏0𝑗𝑗) for 
each group, where 𝑏𝑏0𝑗𝑗~𝑁𝑁(0, 𝜏𝜏2) . For a random 
intercept and a random slope model, vector 𝑏𝑏 is a 
J×2 vector of random effects for each group, where 

𝑏𝑏𝑗𝑗 = �
𝑏𝑏0𝑗𝑗
𝑏𝑏1𝑗𝑗

�~𝑁𝑁(0,𝐺𝐺) , and Z is an n×2J block-

diagonal matrix, for each subject, including 1 for 
their group’s random intercept (𝑏𝑏0𝑗𝑗) and 𝑍𝑍 for their 
group’s random slope (𝑏𝑏1𝑗𝑗). It can be represented as 
a conditional model, as illustrated in Equation (2), 

 𝜇𝜇 = 𝐸𝐸(𝑌𝑌|𝑏𝑏) = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍.  (2) 

The generalized linear mixed model (GLMM) 
extends LMM to accommodate non-continuous 
responses, such as binary or categorical responses 
and the models are denoted as Equation (3), 

 𝑔𝑔(𝜇𝜇) = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍, (3) 

where 𝑔𝑔()  is a monotonic increasing and 
differentiable link function. For example, the logit 
function widely serves as a link function for binary 
responses. 

The correlation between individuals (students) 
within the same group (school) is called the 
intraclass correlation coefficient (ICC) which 
measures the similarity of within-group individuals 
(Raudenbush & Bryk, 2002). In a random intercept 
model, the ICC is calculated by between-group 
variance (𝜏𝜏2) divided by total variance, which is the 
sum of between-group variance (𝜏𝜏2 ) and within-
group variance ( 𝜎𝜎2 ). Since the ICC is the 
proportion of total variance due to group 
differences, higher ICC implies larger group 
difference. 

2.2 Machine learning method: MERF 

A machine learning method, RF is a tree-based 
ensemble method that aggregates a cluster of 
random decision trees. Unlike standard RF 
(Breiman, 2001) that considers fixed effects only, 
MERF (Hajjem et al., 2014) is also capable of 
taking random effects into account, as shown in 
Equation (4), 

 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) + 𝑍𝑍𝑍𝑍 + 𝜀𝜀,  (4) 

where 𝑓𝑓(𝑋𝑋)  is a general and unspecified fixed-
effects part. MERF is applied as follows: After 
calculating the fixed part for the predictors with 
initial value for 𝛽̂𝛽𝑗𝑗 , 𝜎𝜎� , and 𝐺𝐺� , the algorithm takes 
bootstrap samples from the training set to build a 
forest of trees. The predicted fixed part for 
observation i in group j, 𝑓𝑓(𝑋𝑋𝑖𝑖𝑖𝑖), is obtained with 
the training set of trees in the forest. Next, it 
computes 𝑏𝑏�𝑗𝑗  with the updated estimate of the 
random part of Equation (4) and updates the 
variance components 𝜎𝜎�  and 𝐺𝐺� . The algorithm 
keeps repeating those steps until convergence. See 
Hajjem et al. (2014) for detailed explanation.  

RF-based methods rank all predictors by their 
importance in prediction. Specifically, the 
importance function of LongituRF package 
(Capitaine, 2020) in R prints two measures of 
variable importance: the mean decrease of 
prediction accuracy when a given variable is 
permutated (permutation-based importance) and 
the total decrease in node impurity that results from 
splits over that variable, averaged over all trees 
(node impurity-based importance) (James et al., 
2013). The permutation-based importance criterion 
is applied to rank predictors to avoid overfitting.  

In the proposed algorithm, the ranking of all 
predictors is utilized to support predictor selection, 
which serves as a basis of optimal model selection. 
By sequentially adding a top-ranked predictor to 
the provisionary model, the algorithm performs 
predictor selection. Then, based on the predictors 
selected, the optimal model is finally identified in 
the last step. Since educational large-scale 
assessment (LSA) data typically have hierarchical 
structures in common, MERF is applied for 
supporting predictor selection from LSA data. The 
detailed explanation of each step is followed in the 
next section. 
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3 Automated search algorithm for 
optimal GLMM 

In this study, we developed an algorithm to 
automatically search for optimal GLMMs for any 
large data set with hierarchical structures, 
especially LSA data. It mimics how experienced 
researchers identify the best-fitting GLMM. This 
algorithm utilizes forward selection (Hastie et al., 
2017), which begins with a model containing no 
predictors, and then adds predictors to the model, 
one at a time, until complex model with the newly 
added predictor is not significantly different from 
simpler model. Unlike traditional forward selection 
that adds the predictor that gives the greatest 
additional improvement to the fit to the model, we 
select the predictor based on the ranking of their 
importance in prediction sorted by MERF. The 

proposed algorithm contains three main steps, 
preparation, predictor selection, and model 
selection, as demonstrated in Figure 1. 

3.1 Preparation  

In the preparation step, data from schools with 
fewer than 20 students are removed. Next, the size 
of school effects (i.e., ICC) is measured to decide 
whether GLMM is needed or not. If the ICC is less 
than .1, the GLMM is not needed. If the ICC is 
larger than .1, a random intercept model with no 
predictors, called the null model, is built. Both the 
minimum school size and the magnitude of the ICC 
are tentatively decided, yet they can be set by user. 

3.2 Predictor selection  

In the predictor selection stage, MERF is applied to 
rank all predictors of statistical importance, 
specifically mean decrease of prediction accuracy, 
from the highest to the lowest. Especially, the three 
highest ranked predictors are denoted essential 
predictors, V1, V2, and V3, and further utilized to 
the selection of possible interaction term(s).  

Secondly, the top-ranked predictor is selected 
among all predictors that are not in the provisional 
model and added to the model. If the model doesn’t 
converge, the algorithm chooses the next top-
ranked predictor instead. Next, a log-likelihood 
ratio test is performed to determine whether the 
complex model with the newly added predictor is 
significantly different from the simpler model. 
Note that we use forward selection, a greedy 
algorithm, producing a nested sequence of models. 
If the complex model with the added predictor is 
significantly different from the simpler model, the 
predictor is added to the provisionary model; 
otherwise, stop predictor selection and fit the 
GLMM, a random intercept model with all 
significant predictors. This model is referred to as 
a base model. 

Then, the algorithm searches for significant 
interaction terms. Three interaction terms of the 
essential predictors (i.e., V1:V2, V1:V3, and V2:V3) 
are sequentially added to the provisionary model 
and tested their significance. If the complex model 
with the newly added interaction term is 
significantly different from the simpler model, add 
the term to the model; otherwise, stop the 
procedure and identify the current model as the 
preliminary model. 

 

Figure 1:  Flowchart of the automated search 
algorithm. 
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3.3 Model selection  

In the model selection step, the proposed algorithm 
aims to identify the optimal GLMM. First, it 
systematically tests each of the significant 
predictors in the base model as a random slope. To 
test the number of random effects, e.g., whether a 
random intercept and random slope model is 
significantly different from a random intercept 
model, a likelihood ratio test with mixture p-value 
(Self & Liang, 1987; Stram & Lee, 1994) is 
conducted.  

To be specific, the top-ranked significant 
predictor is selected and a random slope for the 
predictor is added to the preliminary model. Then, 
whether the complex model with the newly added 
random slope is significantly different from the 
simpler model (preliminary model) is tested. If it is 
significant, the random slope is added to the 
preliminary model. Adding the next ranked 
significant predictors to the model and testing its 
significance are repeated until a newly added 
random slope is not significant; otherwise, stop and 
identify the current model as the optimal GLMM.  

The processes of optimal model selection are 
summarized as follows. 

1. Start with the null model. 
2. Rank all predictors based on their 

importance using machine learning 
methods (e.g., MERF). 

3. Select the top-ranked predictor among all 
predictors that are not in the provisional 
model.  

4. Add this predictor to the (provisional) 
model. If the model doesn’t converge, 
choose the next top-ranked predictor, and 
so on. Conduct a chi-square difference test 
to determine whether the model with the 
newly added predictor is significantly 
different from the simpler model. 

5. If there is a significant difference, add the 
predictor to the current model; otherwise, 
remove the predictor.  

6. Repeat steps 3 to 5 until a newly added 
predictor is not significant.  

7. Add an interaction term of the top-3 
ranked predictors, called essential 
predictors, to the model one-at-a time and 
test their significance. 

8. If there is a significant difference, add the 
interaction to the model; otherwise, 
remove the interaction term. 

9. Repeat steps 7 to 8 until a newly added 
interaction term is not significant. 

10. Select the top-ranked significant predictor 
and add a random slope for the predictor to 
the model. Conduct a likelihood ratio test 
with mixture p-value whether the model 
with the newly added random slope is 
significantly different from the simpler 
model. 

11. If there is a significant difference, add the 
slope to the current model; otherwise, 
remove the slope.  

12. Repeat steps 10 and 11 until a newly added 
random slope is not significant. 

13. Identify the current model as the optimal 
GLMM. 

4. A real data example 

We illustrate how the proposed algorithm can be 
applied to explore optimal GLMMs using real LSA 
data, the Trends in International Mathematics and 
Science Study (TIMSS). Specifically, the U.S. 
eighth grade student data collected in 2019 is 
utilized to explore optimal GLMM on their 
achievement scores in mathematics. Note that this 
section does not intend to compare the proposed 
algorithm’s performance with other existing 
methods, but to illustrate how the algorithm 
automatically searches for optimal GLMMs from 
LSA data with hierarchy step by step. As far as we 
know, there are no existing methods to perform 
such a thing so far. Data was already cleaned (e.g., 
missing data imputation, etc.). 

4.1 Preparation 

Starting from 232 predictors (independent 
variables) of 8,698 students, the algorithm 
examines the schools with less than the minimum 
number of students and calculates the ICC value to 
decide whether GLMM is necessary. The 
minimum number of students and the ICC cut-off 
values are temporarily set to 20 and 0.1, 
respectively. We find that there are 44 schools with 
fewer than 20 students, leading that 600 
observations being deleted. The ICC value is 0.44, 
implying that 44% of total variance in students’ 
achievement scores in mathematics is explained by 
school differences. Thus, GLMM is needed.  

Next, the algorithm fits a random intercept 
model without any predictors, also denoted as null 
model (Equation 5), 
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𝑦𝑦𝑖𝑖𝑖𝑖 = 515 + 𝑏𝑏0𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖.  (5) 

𝑖𝑖 = 1, 2, … , 𝐼𝐼𝑗𝑗 , 𝐽𝐽 = 229 , 𝑏𝑏0𝑗𝑗~𝑁𝑁(0, 4,027) , 
𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0, 5,239) , where 𝑦𝑦𝑖𝑖𝑖𝑖  referring to students’ 
achievement scores in mathematics. 

4.2 Predictor selection 

In this step, the algorithm aims to search for the 
best base model, which is a random intercept model 
including all significant predictors. First, a machine 
learning method, MERF, ranks all 232 predictors  
based on their importance. We set hyper-
parameters: the number of trees (ntree) is set to 
2,000, and the number of variables randomly 
sampled as candidates at each split (mtry) is to 73, 
the floor of the total number of predictors divided 
by 3, as recommended by Breiman (2001). Note 
that as ntree gets larger, the more stable predictive 
error can be obtained, at the expense of 
computational efficiency.  

The importance plot of the top-30 ranked 
predictors obtained by MERF is illustrated in 
Figure 2. Their names are abbreviated as V1 to V30 
by their ranks and the original names are presented 
in Table 1. 

Then, all the predictors are tested for their 
significance one-at-a time. The algorithm fits the 
base model with 18 significant predictors (V1 to 

V18), including two school-level predictors. A 
likelihood ratio test is conducted to compare the 
null model with the base model. The result 
indicates that the addition of the predictors 
significantly improved model fit, ∆𝜒𝜒2(18) =
3366.70, p < .001 (see, Table 2). The model’s 𝑅𝑅12 
and 𝑅𝑅22  are 0.33 and 0.67, respectively. Note that 
V9 is no longer significant in the base model. 

Next, the algorithm sequentially adds the 
interaction terms of the essential predictors. The 
result of likelihood test shows that an interaction 
term, V1:V2, significantly improved model fit, 
∆𝜒𝜒2(1) = 6.77, p < .01. We denote the model with 
the added interaction term as the preliminary 
model. The models’ 𝑅𝑅2  at both levels are also 
slightly improved. 

4.3 Model selection 

Based on the preliminary model in the previous 
step, the algorithm searches for the optimal random 
slopes. As a result, a random slope for V1 is added 
to the preliminary model. The likelihood ratio test 
with mixture p-value indicates that the complex 
(called intermediate) model with the newly added 
slope is significantly different from the simpler 
(preliminary) model, ∆𝜒𝜒2(2) = 56.69, p (mixture) 

 

Figure 2: Predictor importance plot. 

No. Variable No. Variable 
V1 BSBG04 V16 BSBM18F 
V2 BSBM19C V17 BSBM18E 
V3 BCBG03A V18 BSBM15 
V4 BSBM19A V19 BSBS24C 
V5 BSBG07 V20 BCBG06B 
V6 BSBM19B V21 BCDGTIHY 
V7 BSBM19F V22 BCBG03B 
V8 BSBM19H V23 BSBM26AA 
V9 BCDGSBC V24 BSBM16I 

V10 BSDGEDUP V25 BSBS27BB 
V11 BSBM18C V26 BSBE03E 
V12 BSBM19D V27 BSBS43BB 
V13 BSDAGE V28 BSBE03F 
V14 BSBS24B V29 BSBM18D 
V15 BSBS24G V30 BSBE01A 

Table 1:  Predictor names. 

 

 

Model df AIC logLik ∆𝝌𝝌𝟐𝟐 𝒑𝒑 
Null 3 93095 -46544   
Base 21 89764 -44861 3367 <.001 

Prelim- 22 89759 -44858 7 <.01 

Table 2:  Model comparison (step 2). 
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< .001 (see, Table 3). Note that the interaction term 
(V1:V2) is no longer significant.  

Then, a random slope for V2 is newly added to 
intermediate model and the likelihood test with 
mixture p-value also demonstrates that the newly 
added slope significantly improved model fit, 
∆𝜒𝜒2(3) = 41.00, p (mixture) < .001 (see, Table 3). 
Since the random slope for V3 is not significant, we 
stop model searching and the provisionary model 
is identified as the optimal GLMM.   

The optimal GLMM has a random intercept, 18 
predictors (two school-level predictors, 16 student-
level predictors), an interaction term, and two 
random slopes for V1 and V2, as shown in Equation 
(6), 

𝑦𝑦𝑖𝑖𝑖𝑖 = 603 + 9(𝑉𝑉1)𝑖𝑖𝑖𝑖 + 6(𝑉𝑉2)𝑖𝑖𝑖𝑖 − 17(𝑉𝑉3)𝑗𝑗 −
12(𝑉𝑉4)𝑖𝑖𝑖𝑖 + 7(𝑉𝑉5)𝑖𝑖𝑖𝑖 + 5(𝑉𝑉6)𝑖𝑖𝑖𝑖 − 3(𝑉𝑉7)𝑖𝑖𝑖𝑖 +
5(𝑉𝑉8)𝑖𝑖𝑖𝑖 − 4(𝑉𝑉9)𝑗𝑗 + (𝑉𝑉10)𝑖𝑖𝑖𝑖 + 5(𝑉𝑉11)𝑖𝑖𝑖𝑖 −

3(𝑉𝑉12)𝑖𝑖𝑖𝑖 − 11(𝑉𝑉13)𝑖𝑖𝑖𝑖 + 5(𝑉𝑉14)𝑖𝑖𝑖𝑖 + 6(𝑉𝑉15)𝑖𝑖𝑖𝑖 +
3(𝑉𝑉16)𝑖𝑖𝑖𝑖 + 2(𝑉𝑉17)𝑖𝑖𝑖𝑖 − 8(𝑉𝑉18)𝑖𝑖𝑖𝑖 + (𝑉𝑉1)𝑖𝑖𝑖𝑖 ×

(𝑉𝑉2)𝑖𝑖𝑖𝑖 + 𝑏𝑏1𝑗𝑗(𝑉𝑉1)𝑖𝑖𝑖𝑖 + 𝑏𝑏2𝑗𝑗(𝑉𝑉2)𝑖𝑖𝑖𝑖 + 𝑏𝑏0𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖.  (6) 

𝑖𝑖 = 1, 2, … , 𝐼𝐼𝑗𝑗 , 𝐽𝐽 = 229, 𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0, 3381),  

�
𝑏𝑏0𝑗𝑗
𝑏𝑏1𝑗𝑗
𝑏𝑏2𝑗𝑗

� = 𝑏𝑏𝑗𝑗~𝑁𝑁��
0
0
0
� ,𝐺𝐺 = �

2080 − −
−178 52 −
−152 28 48

��. 

Note that the interaction term (V1:V2) is no longer 
significant in the optimal GLMM. The proposed 
algorithm is likely to find slightly different optimal 
GLMM, due to randomness of predictors’ 
importance ranking obtained by MERF. A user can 
ensure consistent results across runs by setting a 
random seed. 

5. Scientific Importance 

It is crucial for researchers to build an adequate 
optimal model to make valid statistical inferences. 
Identifying the best-fitting GLMM is more time-
consuming and complex than finding the best 
generalized linear model (GLM), because GLMM 
also includes random effects. This algorithm 
automatically evaluates a large number of models 
during the process of building an optimal GLMM 
model. One of the major components is a machine 
learning approach (e.g., MERF), which is applied 

to sort all predictors based on their importance, 
allowing for efficient predictor selection. 

In addition, all available predictors from LSA 
data can be utilized in searching for optimal 
GLMMs without convergence problems using the 
algorithm developed here. It also provides a 
systematic and transparent process that can be 
produced by others, for example, a random 
intercept model is fitted, interaction terms of 
essential predictors are searched, and then random 
slopes are sequentially added to the model. The 
proposed algorithm has the potential to reduce the 
time and effort required by researchers and to 
provide guidelines for exploring the optimal 
GLMMs. We further update this algorithm by 
taking more considerations into account to explore 
best-fitting GLMMs. 
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