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Abstract

This study explores whether large language
models (LLMs) can simulate valid student
responses for educational measurement.
Using GPT-40, 2000 virtual student
personas were generated. Each persona
completed the Academic Motivation Scale
(AMS). Factor analyses(EFA and CFA) and
clustering showed GPT-4o reproduced the
AMS structure and distinct motivational
subgroups.

1 Introduction

In psychometric research, collecting real human
responses is essential for developing and validating
psychological scales. Traditional item
development requires large datasets to estimate
item parameters, assess factor structures, and revise
items based on empirical evidence. However,
collecting human data is time-consuming, costly,
and sometimes limited by ethical or logistical
concerns.

With the rise of generative Al models, some
researchers have explored using Large Language
Models (LLMs) to simulate response data for
psychological research. These models can generate
both participant profiles (personas) and their
responses to standardized instruments. For
example, De Winter et al. (2024) used ChatGPT-4
to generate 2000 virtual personas who completed
multiple personality tests. Other studies have
applied similar methods in areas such as
personality assessment (Argyle et al., 2023), item
generation (Bhandari et al., 2024), and clinical
diagnosis (Cook et al., 2024). These early findings
suggest that LLMs may reproduce some aspects of
human psychological variability, but the extent of
their validity remains an open question. Liu et al.
(2025) found that LLM-generated responses

cannot fully substitute human respondents in all
aspects of item-level psychometric performance.

In the field of educational psychology, relatively
few studies have examined the use of generative Al
models to simulate student motivation data.
Learning motivation is commonly assessed
through self-report instruments such as the
Academic Motivation Scale (AMS; Vallerand et al.,
1992) and the Motivated Strategies for Learning
Questionnaire (MSLQ; Pintrich et al., 1991).
Among these, AMS is widely used to measure
motivation based on Self-Determination Theory
(SDT; Deci & Ryan, 2000), covering intrinsic
motivation, extrinsic regulation, and amotivation
dimensions. The AMS has been validated in many
populations and contexts (Bacanli & Sahinkaya,
2011; Barkoukis et al., 2008; Fairchild et al., 2004;
Guay et al., 2014; Stover et al., 2012; Utveer &
Haugan, 2016), but it remains unclear whether Al-
generated data can replicate its established factor
structure.

This study investigates whether GPT-40 can
simulate plausible student responses on the AMS,
and whether the generated data exhibit acceptable
psychometric properties. Specifically, this study
asks:

Q1: Can GPT-generated responses reproduce
the expected 7-factor structure of AMS, including
IMTK, IMTA, IMES, EMID, EMIN, EMEX, and
AMOT subscales?

Q2: Can GPT-generated persona descriptions
be clustered into meaningful subgroups, and do
these subgroups show distinct response patterns
across AMS subscales?
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2 Related Works

2.1 Measuring Learning Motivation

Student motivation has been widely studied in
educational psychology. Several validated scales
are used to measure motivation constructs. The
Academic Motivation Scale (AMS; Vallerand et
al., 1992) is one of the most widely used
instruments, grounded in Self-Determination
Theory (SDT; Deci & Ryan, 2000). The AMS
assesses seven subtypes of academic motivation,
including intrinsic motivation to know (IMTK),
intrinsic motivation to accomplish (IMTA),
intrinsic motivation to experience stimulation
(IMES), identified regulation (EMID), introjected
regulation (EMIN), external regulation (EMEX),
and amotivation (AMOT). This structure has been
validated across different populations and cultural
contexts (Bacanli & Sahinkaya, 2011; Barkoukis et
al., 2008; Fairchild et al., 2004; Guay et al., 2014;
Stover et al., 2012; Utveer & Haugan, 2016).
However, even for well-established scales like
AMS, researchers typically require large-scale
human response data to examine factor structure,
reliability, and construct validity. This process can
be resource-intensive, and difficult to replicate
across diverse samples.

2.2 Al-Generated Psychometric Data

With the development of generative Al models,
researchers have begun to explore using large
language models to simulate human response data.
De Winter et al. (2024) demonstrated that
ChatGPT-4 can generate thousands of virtual
personas who complete various personality
inventories. Similar methods have been applied to
simulate item-level responses in personality
assessment (Argyle et al, 2023), clinical
measurement (Cook et al., 2024), and item
generation for educational testing (Bhandari et al.,
2024). These studies suggest that LLMs may
capture certain aspects of psychological variability.

However, the wvalidity of Al-generated
psychometric data remains uncertain. Liu et al.
(2025) found that while LLM-generated
respondents may mimic some human response
patterns, they cannot fully substitute for human
data, particularly when analyzing fine-grained item
functioning. Moreover, most prior studies have
focused on personality or clinical scales.
Applications of LLMs in simulating student
motivation data remain scarce.

2.3 Research Gap

Although early work suggests LLMs have some
capacity to generate psychologically meaningful
data, few studies have systematically tested
whether Al-generated responses can reproduce
complex factor structures of educational
motivation instruments like AMS. In addition, the
combination of LLM-based persona generation
and psychometric analysis has not been fully
explored in this domain. This study addresses this
gap by evaluating whether GPT-40 can simulate
realistic AMS responses, and whether persona
embeddings can reveal subgroup patterns
consistent with motivation theory

3 Methods

3.1 Participants and Data Generation

In this study, no real human participants were
recruited. Instead, all data were generated through
simulated personas using the GPT-40 model. The
generation process included two stages: persona
creation and questionnaire response simulation.

3.2 Personas Generation

The design of the persona prompt was informed by
prior work using ChatGPT to create fictional
respondents for psychological surveys (De Winter
et al., 2024). The process was not a strict iterative
protocol, but the final version was tested informally
to ensure that the personas were coherent and
diverse.

The prompt structure also reflects the RISE
framework of prompt engineering. It defined a
clear Role for the model (generate fictional
students), specified the Input (age, gender, and a
short profile), outlined the Steps (produce three
descriptive sentences), and set the Expectations
(concise one-line outputs). This helped create
consistent personas while still allowing variation
across individuals.

First, 2000 virtual student personas were
generated using GPT-4o0 (temperature = 1). Each
persona included three elements: age (18-25),
gender, and a short description (3 sentences)
summarizing their academic personality, learning
style, and motivational tendencies. The generation
prompt was structured to ensure diversity across
motivational profiles while maintaining coherence
within each persona. The personas were returned as
text files for further processing. The prompts used
in this stage are shown below:
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Generate 20 fictional student personas. Each
should include:

- Age (18-25)

- Gender

- A 3-sentence description of their academic
personality, learning style, and motivation.

Each persona should be on one line, like:

0001. 20, Female Loves collaborative
learning; often uses concept maps to organize her
thoughts; tends to get anxious during exams.

Only return the 20 personas, nothing else.

To generate the full dataset, GPT-40 was called
repeatedly in batches of 20 personas per request. In
total, 100 batches were generated to produce 2000
unique persona descriptions.

It is important to clarify that the inclusion of
“learning styles” in the persona descriptions does
not reflect a theoretical endorsement of this
concept. The idea that students learn best in their
preferred style has been widely challenged in the
literature (Nancekivell et al., 2019). In this study,
learning style phrases were used only to enrich the
variety and naturalness of the personas. They were
not analyzed as variables and did not influence the
psychometric results.

3.3 AMS Responses Generation

After generating the personas, each simulated
student was asked to complete the Academic
Motivation Scale (AMS), which consists of 28
items rated on a 7-point Likert scale (1 = Does not
correspond at all, 7 = Corresponds exactly). For
response generation, GPT-40 was instructed to
simulate AMS item-level answers based on the
persona descriptions. To minimize randomness in
item response generation, the temperature was set
to 0. The model returned raw item responses as a
list of integers for each persona. Here is the prompt
used in this stage.

Imagine the following student. (personas),

This student is now responding to the Academic
Motivation Scale (AMS).

There are 28 items, each rated from 1 (Does not
correspond at all) to 7 (Corresponds exactly).

(28 full items),

Please return exactly 28 integers separated only
by commas. No explanation, no labels. Just the
numbers.

The full item texts were embedded into the prompt
to ensure that GPT-40 received the exact
questionnaire content for each response simulation.
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3.4 Psychometric Analysis (EFA and CFA)

Exploratory factor analysis (EFA) was conducted
to examine whether the GPT-generated AMS
responses reproduced the expected factor structure.
All 28 AMS items were included in the analysis.
The factor extraction was performed using
principal axis factoring. The number of factors was
determined based on parallel analysis and scree
plot inspection. Promax rotation was applied to
allow correlated factors. Factor loadings were
evaluated to assess whether items loaded onto the
intended subscales.

Confirmatory factor analysis (CFA) was used to
test the fit of the established seven-factor structure
of AMS. Each item was assigned to its
corresponding subscale based on the original AMS
theoretical model (Vallerand et al., 1992). The
model included the following factors: IMTK,
IMTA, IMES, EMID, EMIN, EMEX, and AMOT.
CFA was conducted using maximum likelihood
estimation. Model fit was evaluated using common
fit indices: Comparative Fit Index (CFI), Root
Mean Square Error of Approximation (RMSEA),
and Standardized Root Mean Square Residual
(SRMR). Factor loadings were examined to assess
item performance within each factor.

3.5 Semantic Clustering of GPT-Generated

Personas

In addition to analyzing AMS responses,
persona descriptions generated by GPT-40 were
analyzed to identify motivational subgroups. The
persona texts were vectorized using GPT-4o
embedding models (text-embedding-3-small). The
resulting embeddings represented the semantic
information contained in each persona description.
K-means clustering was applied to the embeddings
to partition the personas into three clusters (k = 3).
The choice of three clusters was based on initial
exploratory  analysis and  interpretability
considerations.
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Table 1: Confirmatory Factor Analysis Results for
GPT-Generated AMS Responses.

3.6 Subgroup Responses Analysis

After clustering, subscale scores for each of the
seven AMS factors were calculated for each
persona. Subgroup differences across clusters were
analyzed to examine whether the clustering
structure aligned with meaningful motivational
patterns. Boxplots were used to visualize subscale
score distributions across clusters. Non-parametric
tests (e.g., Kruskal-Wallis tests) were performed to
evaluate the statistical significance of subgroup
differences on each AMS subscale.

All analyses were conducted in R (version 4.2.3;
R Core Team, 2023) using RStudio (version
2025.05.1+513; Posit Software, PBC).

4 Results and Discussions

4.1 EFA and CFA

A parallel analysis was conducted to determine the
appropriate number of factors. The analysis
suggested that seven factors should be extracted,
fully consistent with the original structure of the
AMS. This result indicates that the GPT-generated
responses preserved the intended dimensional
structure of academic motivation as specified by
Self-Determination Theory. Figure 1 shows
parallel analysis scree plot for factor extraction.

The scree plot suggested a dominant first factor,
followed by a sharp decline after the second factor.
This result reflects a potential tendency of GPT-
generated data to compress variance into fewer
principal components, possibly due to the semantic
coherence of Al-simulated responses.
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Table 1 specifies what font sizes and styles must
be used for each type of text in the manuscript.

A confirmatory factor analysis (CFA) was
conducted to test the fit of the theoretical seven-
factor structure of AMS. The CFA model included
all seven subscales: IMTK, IMTA, IMES, EMID,
EMIN, EMEX, and AMOT. The model
demonstrated acceptable fit: CFI = 0.908, TLI =
0.894, RMSEA =0.082, and SRMR = 0.065. These
indices suggest that the GPT-generated responses
generally reproduced the expected factor structure
of AMS, although the fit was not perfect.

Standardized factor loadings were strong for
most items, particularly for intrinsic and identified
motivation subscales. For example, IMTK items
loaded between 0.81 and 0.95, and EMID items
loaded between 0.76 and 0.94. In contrast, several
AMOT items displayed lower or unstable loadings
(e.g., AMS Q12 =0.35; AMS Q26 = 0.32). This
pattern suggests that GPT-40 simulated positively
valenced motivation dimensions more consistently
than disengagement states such as amotivation.

The EFA and CFA results suggest that GPT-40
can partially reproduce the established factor
structure of the AMS. While the model fit is not
perfect, the seven-factor structure generally holds,
particularly for intrinsic and identified motivation
subscales. The relatively weaker performance on
amotivation items may reflect GPT-40’s default
bias toward goal-directed, coherent outputs, which
may limit its ability to fully simulate psychological

disengagement. Similar limitations have been
noted in previous LLM-based simulation studies
(Liu et al., 2025). Overall, these results provide
preliminary  evidence that LLM-generated
response data may capture key aspects of
psychological constructs but may require further
refinement when modeling negative or conflictual
motivational states.

4.2 Semantic Clustering of GPT-Generated
Personas

To explore potential subgroups in the GPT-
generated student personas, semantic clustering
was conducted based on persona descriptions. Each
persona text was vectorized using GPT-4o
embeddings (text-embedding-3-small), and k-
means clustering was applied. The number of
clusters was set to k = 3 based on interpretability
and preliminary exploration.
GPT-40 Embedding Clustering (t-SNE Visualization)
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Figure 2: Semantic Clustering of GPT-Generated
Personas Using t-SNE Visualization

A t-SNE visualization was generated to display
the cluster separation in two dimensions. The
clusters were well-separated, suggesting that GPT-
generated persona descriptions contained distinct
semantic features that could differentiate students
into subgroups.

Subscale scores for the seven AMS factors were
calculated for each persona. Boxplots were created
to compare AMS subscale scores across clusters.
Results showed that cluster membership was
associated with different motivational profiles.
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Figure 3: Subscale Score Differences Across GPT-
40 Semantic Clusters

Cluster 1 displayed higher scores on intrinsic
motivation subscales (IMTK, IMTA, IMES),
suggesting students with strong intrinsic academic
interests. Cluster 2 showed moderate levels of
intrinsic and extrinsic motivation. Cluster 3
demonstrated slightly elevated external regulation
(EMEX) and lower intrinsic motivation,
suggesting more externally driven or performance-
oriented students.

Kruskal-Wallis tests confirmed significant
differences across clusters for most AMS subscales
(p < .001 for IMTK, IMTA, EMEX, AMOT; p <
.01 for IMES, EMID, EMIN), indicating that
semantic clustering based on persona descriptions
corresponded meaningfully with  simulated
questionnaire responses.

The clustering results suggest that GPT-40 not
only generated item-level responses consistent

with AMS factor structure, but also produced
semantically rich persona profiles that reflected
distinct motivational orientations. Subgroups
identified through semantic embeddings showed
systematic differences across AMS subscales,
supporting the convergent validity between
generated persona characteristics and
questionnaire outcomes.

These findings demonstrate that large language
models may capture latent psychological patterns
even before formal scale administration, purely
based on persona-level text descriptions. This
capability may have potential applications for
early-phase scale development, where synthetic
data may help evaluate item functioning across
diverse hypothetical profiles prior to human data
collection. Researchers can use this approach to
screen for problematic items, evaluate whether
expected factor structures emerge, and explore
subgroup patterns across hypothetical profiles.
Such applications may reduce costs, speed up
validation cycles, and support scale adaptation in
new contexts. Theoretically, this work also
contributes to ongoing debates about the extent to
which LLMs can approximate latent psychological
constructs. It shows both the potential and the
current limits of Al personas in capturing human-
like motivational patterns.

However, it should be noted that GPT-generated
clusters may reflect idealized or overly coherent
motivational types, as the model tends to generate
consistent and goal-oriented outputs. Additional
validation with real human data is needed to fully
assess the generalizability of these subgroup
structures.

5 Limitations and Future Directions

While the present study demonstrates the
promising potential of large language models
(LLMs) like GPT-40 in generating psychologically
plausible student response data, several limitations
should be acknowledged.

First, although the generated responses
reproduced the theoretical factor structure of AMS
reasonably well, the confirmatory factor analysis
still yielded only moderate model fit (e.g., RMSEA
= 0.082). This suggests that LLM-generated data
may not fully replicate the nuanced variance found
in real human populations. In particular, the
amotivation (AMOT) subscale consistently
showed weaker or unstable loadings, which may
reflect GPT-40’s inherent difficulty in simulating
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disengaged or conflicted psychological states. This
aligns with prior observations that LLMs tend to
default toward coherent, goal-oriented, and
positively valenced outputs (e.g., Liu et al., 2025).

Second, the current study focused on only one
questionnaire (AMS) and one LLM model (GPT-
40). The generalizability of these findings to other
constructs, instruments, or LLM architectures
remains unclear. Expanding this approach to
include additional validated scales (e.g., MSLQ,
AEQ) and cross-model comparisons would help
clarify whether the observed psychometric patterns
are robust across different psychological domains.

Third, the clustering analysis relied solely on
text embeddings of GPT-generated persona
descriptions. While meaningful subgroups were
identified, these clusters are not directly validated
against real-world student samples. Future work
should compare LLM-generated subgroup
structures to empirical cluster solutions obtained
from human data to assess alignment and potential
biases.

Finally, this study examined LLM-generated
responses under controlled prompting conditions,
using fixed temperature settings and instruction
formats. Prompt engineering decisions likely play
a crucial role in shaping response variability and
latent structure reproduction. Future research
should systematically investigate how prompt
design, randomness parameters, and persona
context framing influence the psychometric
properties of generated data.

Another point worth noting is that the use of
learning style descriptors in the persona prompts
should not be read as a validation of the learning
styles hypothesis. Like we mentioned before, the
concept has been widely debated and is not
supported by strong empirical evidence
(Nancekivell et al., 2019). Here it served only as a
descriptive element to make the personas sound
more realistic, and it had no bearing on the
psychometric findings.

Despite these limitations, this study offers a
novel empirical demonstration of how generative
Al can contribute to early-stage scale development
and psychometric exploration. As LLM
capabilities continue to evolve, careful validation
studies combining both real and simulated data will
be critical for evaluating the responsible integration
of Al tools in psychological measurement. The
findings have both theoretical and practical
implications. Theoretically, they suggest that large

language models can reproduce complex
motivational structures like those in AMS,
although with biases toward positive and coherent
states. This adds to current discussions in
psychometrics about whether Al can model latent
constructs. Practically, the study points to the value
of Al personas as a tool for instrument testing and
development. With further refinement, such
simulations may help researchers reduce the cost
and time of scale validation, while also expanding
opportunities to explore item functioning across
diverse cultural or contextual settings.
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