@inproceedings{guo-etal-2025-leveraging,
title = "Leveraging multi-{AI} agents for a teacher co-design",
author = "Guo, Hongwen and
Johnson, Matthew S. and
Saldivia, Luis and
Worthington, Michelle and
Ercikan, Kadriye",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.4/",
pages = "25--34",
ISBN = "979-8-218-84228-4",
abstract = "This study uses multi-AI agents to accelerate teacher co-design efforts. It innovatively links student profiles obtained from numerical assessment data to AI agents in natural languages. The AI agents simulate human inquiry, enrich feedback and ground it in teachers' knowledge and practice, showing significant potential for transforming assessment practice and research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-etal-2025-leveraging">
<titleInfo>
<title>Leveraging multi-AI agents for a teacher co-design</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongwen</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Johnson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Saldivia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Worthington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kadriye</namePart>
<namePart type="family">Ercikan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>This study uses multi-AI agents to accelerate teacher co-design efforts. It innovatively links student profiles obtained from numerical assessment data to AI agents in natural languages. The AI agents simulate human inquiry, enrich feedback and ground it in teachers’ knowledge and practice, showing significant potential for transforming assessment practice and research.</abstract>
<identifier type="citekey">guo-etal-2025-leveraging</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.4/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>25</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging multi-AI agents for a teacher co-design
%A Guo, Hongwen
%A Johnson, Matthew S.
%A Saldivia, Luis
%A Worthington, Michelle
%A Ercikan, Kadriye
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F guo-etal-2025-leveraging
%X This study uses multi-AI agents to accelerate teacher co-design efforts. It innovatively links student profiles obtained from numerical assessment data to AI agents in natural languages. The AI agents simulate human inquiry, enrich feedback and ground it in teachers’ knowledge and practice, showing significant potential for transforming assessment practice and research.
%U https://aclanthology.org/2025.aimecon-main.4/
%P 25-34
Markdown (Informal)
[Leveraging multi-AI agents for a teacher co-design](https://aclanthology.org/2025.aimecon-main.4/) (Guo et al., AIME-Con 2025)
ACL
- Hongwen Guo, Matthew S. Johnson, Luis Saldivia, Michelle Worthington, and Kadriye Ercikan. 2025. Leveraging multi-AI agents for a teacher co-design. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers, pages 25–34, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).