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Abstract

Objective and scalable measurement of teach-
ing quality is a persistent challenge in educa-
tion. While Large Language Models (LLMs)
offer potential, general-purpose models have
struggled to reliably apply complex, authen-
tic classroom observation instruments. This
paper uses custom LLMs built on sentence-
level embeddings, an architecture better suited
for the long-form, interpretive nature of class-
room transcripts than conventional subword
tokenization. We systematically evaluate five
different sentence embeddings under a data-
efficient training regime designed to prevent
overfitting. Our results demonstrate that these
specialized models can achieve human-level
and even super-human performance with ex-
pert human ratings above 0.65 and surpass-
ing the average human-human rater correla-
tion. Further, through analysis of annotation
context windows, we find that more advanced
models—those better aligned with human judg-
ments—attribute a larger share of score vari-
ation to lesson-level features rather than iso-
lated utterances, challenging the sufficiency of
single-turn annotation paradigms. Finally, to
assess external validity, we find that aggregate
model scores align with teacher value-added
measures, indicating they are capturing fea-
tures relevant to student learning. However,
this trend does not hold at the individual item
level, suggesting that while the models learn
useful signals, they have not yet achieved full
generalization. This work establishes a viable
and powerful new methodology for Al-driven
instructional measurement, offering a path to-
ward providing scalable, reliable, and valid
feedback for educator development. !

1 Introduction

Measuring teaching quality is hard (Jurenka et al.,
2024; Kane and Staiger, 2012; Ho and Kane,

"https://github.com/hardy-
education/measuring;eachinge.ncoders

2013). Despite their ubiquity as the primary form
of teacher development and evaluation, ratings
of instructional quality, even when conducted by
trained experts, have low reliability, unknown ac-
curacy, and are very expensive to conduct (Ho and
Kane, 2013; Kane et al., 2015; Kane and Staiger,
2012; Glaese et al., 2022; Whitehill and LoCasale-
Crouch, 2024; Whitehurst et al., 2014; Jurenka
et al., 2024; Tack et al., 2023; Grissom et al., 2013;
Liu and Cohen, 2021). Recent work has sought to
reduce the costs of these evaluations using large
language models (LLMs) to annotate spoken dis-
course in classrooms to support such evaluations
on actual instruments used with educators, but such
models have not yet shown the ability to help with
these complex tasks (Wang and Demszky, 2023;
Whitehill and LoCasale-Crouch, 2024; Xu et al.,
2024; Hardy, 2024). This study builds on these
studies, answering calls to do more to evaluate the
capacity of LLMs for classroom tasks (Casabianca
et al., 2013; Liu and Cohen, 2021).

This study investigates whether pretrained con-
textual embeddings at the sentence level can mean-
ingfully capture classroom dialogue for automated
assessment of instructional quality. We systemat-
ically evaluate multitask encoder models trained
on fixed sentence-level embeddings to predict ex-
pert human ratings of teaching effectiveness across
25 distinct instructional dimensions. We achieve
state-of-the-art performance on this task, surpass-
ing existing human benchmark correlations while
providing novel insights into the training dynam-
ics of multitask models applied to educational dis-
course.

Our findings have significant implications for
educational assessment and the broader application
of NLP methods to specialized domains. We show
that shared-weight multitask architectures initially
learn general representations of teaching quality
that align well with student outcomes, but contin-
ued training may lead to overfitting to noisy human
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annotations on individual constructs rather than
the underlying pedagogical constructs of interest.
These insights suggest new directions for develop-
ing robust Al systems for classroom analysis and
highlight fundamental challenges in aligning au-
tomated assessments with meaningful educational
outcomes.

1.1 Primary Contributions

1. A longitudinal analysis of representation
learning for teaching quality. We provide
the first systematic evidence of how different
sentence-embedding LL.Ms develop an under-
standing of effective instruction throughout
their training process.

2. A new benchmark for automated instruc-
tional rating. We demonstrate state-of-the-art
performance, outperforming existing models
by achieving the highest human-expert corre-
lation across 25 distinct instructional dimen-
sions.

3. A critique of single-turn evaluation.
Through the first analysis of score stability
over time, we show that static, single-turn
evaluations are insufficient and introduce a
more robust, temporally-aware method for
assessing LL.LM-based ratings.

4. A validation framework linking ratings to
student achievement. We introduce the first
methodology to directly measure the align-
ment between an LLM’s ratings of teaching
and externally-validated measures of student
learning gains (teacher value-added).

2 Related Work and Motivation
2.1 Sentence Embeddings

The robustness of pre-trained language models
to out-of-distribution text remains an open ques-
tion, particularly for specialized domains such
as educational settings where child speech pat-
terns and pedagogical discourse structures predom-
inate. To address this challenge, we investigate
whether sentence-level embeddings (Reimers and
Gurevych, 2019) can provide more stable repre-
sentations of classroom language than traditional
subword tokenization approaches, despite the po-
tential loss of fine-grained semantic information.
We test the large versions of each of the follow-
ing pre-trained sentence embeddings: Unsuper-
vised SimCSE and Supervised SimCSE (Gao et al.,

2022), ES (Wang et al., 2024a), Multilingual E5
(Wang et al., 2024b), GTE (Li et al., 2023), and a
contrast fine-tuned RoOBERTa model released with
sentence-transformers (Liu et al., 2019; Reimers
and Gurevych, 2019). This diversity in embedding
approaches also allows us to investigate potential
biases in model interpretation across different lin-
guistic communities and teaching contexts.

2.2 Teacher Development and Evaluation

School leaders working with teachers to improve
the quality of instruction typically evaluate the
teacher’s proficiency in a range of competencies
(typically measured during in-class observation
and evaluation on a teaching rubric; (Aguilar,
2013; Bambrick-Santoyo, 2016, 2018)), a process
that is often time-consuming and produces rat-
ings (labels) that are unreliable (Kane and Staiger,
2012; Blazar, 2018; Kane et al., 2013; Casabi-
anca et al., 2013). Without accurate classifica-
tions, it is challenging for practitioners to prior-
itize instructional needs and aligned practices from
among the many elements of good teaching (Sa-
phier et al., 2008; Darling-Hammond, 2014; Ham-
mond, 2015; Lemov and Atkins, 2015; Lemov,
2021; Liljedahl et al., 2021; Darling-Hammond
et al., 2020; Schwartz et al., 2016) and for re-
searchers to empirically quantify the impact of
good teaching practices (Pianta and Hamre, 2009;
Charalambous and Delaney, 2019; Blazar and Pol-
lard, 2022; Jurenka et al., 2024). Thus, this work
provides a bridge to research seeking to improve
teaching quality by providing feedback to teachers
on various instructional techniques (Samei et al.,
2014; Donnelly et al., 2017; Kelly et al., 2018;
Demszky et al., 2021; Suresh et al., 2022; Jacobs
et al., 2022; Alic et al., 2022; Demszky and Liu,
2023; Demszky et al., 2024, 2023).

Automated Evaluation Several studies have in-
vestigated automated evaluation (Whitehill and
LoCasale-Crouch, 2024; Wang and Demszky,
2023; Xu et al., 2024; Hardy, 2024). This study
builds on these studies, and replicates the encoder
model constructions described by Hardy..

3 Methods

For each method, we also display the results at the
item-level for better understanding of the learning
process.

%A more complete description of the model architecture is
in (Hardy, 2024)
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3.1 Human Expert Rating Correlation

To find a generalized measure of correlation across
items similar to CLASS and MQI, we use a multi-
level partial Spearman’s correlation with inference
based on item-level random effects. This accounts
for the hierarchical structure while providing a ro-
bust, rank-based measure of association that gener-
alizes beyond the specific items sampled.

Ppart = Corr(R(1 R(Q) | Jij)

1]

3.2 LLM Rating Stability via Variance
Decomposition

We employed a generalizability theory framework
(Brennan, 2001) to decompose variance in auto-
mated LLM scoring across six nested hierarchical
levels: sentences (X) within utterances (U) within
chapters (C) within lesson stages (S) within lessons
(L) within teachers (T), denoted as X : U : C :
S : L : T. This design enables quantification of
context dependency as models evolve during train-
ing. The proportion of variance attributable to each
level, h € {T,L,S,C,U, X, e}, is:

2
oy

Ph =
0%+ 03 + 0%+ 0l + o} + 0% +02

3.3 External Validity via 7-Canonical
Correlation Analysis

We employ canonical correlation (Hotelling, 1936)
analysis (CCA) with a Kendall’s tau (Kendall, 1938,
1945) kernel to measure alignment between teacher
value-added measures (VAMSs) and classroom in-
structional ratings. In this case, we need a met-
ric that captures the directional alignment only, as
differences in scales and ranks may not be mean-
ingful.> We briefly reconstruct the 7 kernel for
creation of scatter matrices here to motivate it as a
highly robust (Bishara and Hittner, 2017) measure
of alignment between LLM ratings, X, and another
metric, y and as having a straightforward alignment
interpretation. We translate the following statement
into the desired kernel: "LLM X rates lesson A as
better than lesson B: [x4 > xg]|. Does the order
align with student learning results Y associated

3For example, if two raters give Lesson A the same score
of 7, but give Lesson B different ratings, 3 and 4, we would
not have evidence to support the notion that LLMs (or even
humans) apply an instructional rubric precisely enough for

such differences in interval ranks to be practically meaningful
when measuring alignment.

with each lesson, [ya > yp|?" Thus, for any two
lessons, indexed by ¢ and j and with brackets as
indicator functions, we construct this relationship
for each:

zij =1 > —[j<il, w;=1[>i-1[<i

We construct Gram matrices K x and Ky where
[Kxlij = K-(x;,%;) and analogously for Ky,
which are used to solve the eigenvalue problem
required for canonical correlation. In our case, all
matrices were positive semi-definite and no smooth-
ing was needed. The results are robust to typical
transformations for the calculation.*

4 Data and Experiment

4.1 Data

The original classroom lessons used in this study
are from the National Center for Teacher Effec-
tiveness (NCTE) Main Study (Kane et al., 2015),5
which contains 3 years of data collection and ob-
servations of math instruction in approximately 50
schools and three hundred (4th and 5th grade) math-
ematics classrooms across 4 school districts in the
United States. This rich dataset contains multiple
measures of teaching effectiveness, including ex-
pert ratings of the lessons classrooms, and multiple
high-quality measures student learning gains.

Classroom Lessons and Text Human raters
watched videos classrooms, and the transcripts®
of these same videos (Demszky and Hill, 2022)
are used by LLMs for the same task, where the
class discourse is equipartitioned across words to
align the text with human labels in the absence of
timestamps, following (Hardy, 2024).

Observation Instruments Our approach encom-
passes two complementary observation frame-
works: a 12-item general teaching practices instru-
ment and a 13-item mathematics-specific teaching
assessment (Bacher-Hicks et al., 2017, 2019): the
CLASS framework (Pianta et al., 2008) for gen-
eral instructional practice and the content-specific
Mathematical Quality of Instruction (MQI) (Hill

*We also compute the generalized eigenvalue problem
using the methods put forward by (Yoon et al., 2020) with the
results in the appendix.

5ht’cps: //www.icpsr.umich.edu/web/ICPSR/
studies/36095/datadocumentation

https://github.com/ddemszky/
classroom-transcript-analysis
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et al., 2008). The 63 MQI raters and the 19 ex-
ternal CLASS raters attended biweekly calibra-
tion meetings to ensure standardization of scor-
ing procedures. Both frameworks are composed
of multiple items that represent distinct instruc-
tional dimensions to be evaluated (Hill et al., 2008;
Hardy, 2024; Hill et al., 2012; Kane and Staiger,
2012). The MQI and CLASS also represent two
types of task for LLMs—detection and summariza-
tion, respectively—a distinction that is also clearly
illustrated by the distributions of scores coming
from the human raters (see Figure 2). Human rat-
ing experts watched videos and provided ratings
on all MQI and CLASS items at regular intervals
throughout the class, resulting in 779,107 unique
numeric ratings provided in 1,762 lessons’ deliv-
ered by 317 teachers to more than 10,000 students
in 53 schools.

Value-added measures (VAMSs) are the current
gold standard for estimating teacher effects on stu-
dent achievement gains (Kane and Staiger, 2012;
Bacher-Hicks et al., 2017, 2019). VAMs use prior
student achievement data and other covariates to
measure whether a student’s end-of-year perfor-
mance was above or below the student’s expected
performance on a standardized exam. The teacher-
level VAM is an estimate of the combeined de-
viations from expected performance for their stu-
dents, offering a rigorous aggregated estimate of
a teacher’s contribution to student learning gains
over a school year. As far as we are aware, this is
the first study to test LLMs using standardized and
value-added measures of student learning. Rare for
education datasets, the data of the present study
have multiple VAM measurements, which we will
use together as a random vector for canonical corre-
lation (and stacked at the year level (Bacher-Hicks
et al., 2019) for item-level comparisons).

4.2 Encoder Model Construction

We develop custom encoder architectures based
on sentence-level embeddings to address four key
research questions: (1) embedding efficiency in
model training, (2) performance relative to human
raters, (3) score variation across different temporal
contexts, and (4) alignment with rigorous measures
of student learning outcomes.

Why Sentence Embeddings? A More Inter-
pretable Architecture. Analyzing lengthy class-

7Transcripts are available for 1,600 of the lessons (Dem-
szky and Hill, 2022)

room discourse poses a challenge for standard
LLMs, whose subword tokens are often too gran-
ular and computationally intensive for such long-
form text. To overcome this, we chose sentence-
level embeddings as our foundation. Sentences
are natural, interpretable semantic units, allowing
our models to efficiently process entire lessons and
directly map what a teacher says to established ped-
agogical frameworks. We evaluated five pretrained
sentence-embedding models within a multi-task
architecture that learns to score 25 distinct teach-
ing dimensions simultaneously. The model’s core
weights are shared across all tasks, reflecting the
pedagogical theory that effective teaching is a co-
hesive skill set. Only the final output layers are
specialized for each dimension, allowing the model
to learn both general and specific features of in-
structional quality.

Structuring Data for Meaningful Analysis. To
capture the natural rhythm of a class, we organized
transcripts into a three-phase structure (beginning,
middle, end) common in elementary math. Each
phase was then divided into chapters of a fixed
duration (7.5 minutes for MQI, 15 for CLASS). We
processed teacher speech into individual sentences,
creating uniform inputs and enabling the model
to update its assessment with each new utterance.
We further augmented our dataset using a sliding-
window technique to generate additional training
samples from the discourse.

An Efficient and Robust Training Protocol.
Given the challenge of collecting high-quality ob-
servation data, our training protocol prioritized effi-
ciency and generalization. All models were trained
for five epochs. We first determined the optimal op-
timizer by testing AdamW and Adamax; Adamax
proved more stable for four of the five models under
the strong regularization needed to prevent overfit-
ting. The fifth model (GTE) performed better with
AdamW. We retained all models to ensure a com-
prehensive evaluation. Additional training details
follow the protocol in (Hardy, 2024).

5 Discussion

5.1 Some embeddings are better than others

Not all contextual embeddings capture the same
semantic information. The RoBERTa, Unsuper-
vised SimCSE, and E5 Multilingual models consis-
tently outperformed other embedding models in the
present study. When correlations are measured by
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Figure 1: Correlation with human experts across train-
ing epochs. The MQI instrument had at least two human
raters per lesson, and the mean and interquartile range
of all 63 human MQI raters correlated across the other
raters are represented by the gray line and shaded region
in the figure.

aggregating to the lesson-level, all models’ ratings
would be in the top quartile of human raters. The
item level performance at the chapter level can be
investigated more deeply in Fig 6.

Implications Future work should explore fine-
tuning SimCSE embeddings or similar self-
supervised fine-tuning techniques on related class-
room transcripts to investigate the extent to which
providing domain-specific contrastive learning
could further capture the most relevant semantic
information from classroom discourse. Sentence-
level embeddings also provide a pathway to inter-
pretability with feature attribution via integrated
gradients. Usefulness of feature attribution meth-
ods rely on how interpretable each input feature is.
In the case of classroom instruction, a sentence spo-
ken is a meaningful unit of discourse, whereas more
common methods of creating features for LLMs
typically rely on subword tokenization, producing
a pixelated semanticity much harder for humans to
interpret.

5.2 Mature models show score stability across
longer time windows

Analysis across training epochs revealed a system-
atic shift in variance attribution: early-epoch mod-
els exhibited substantial utterance-level variation
(pv), while mature models demonstrated increased
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Figure 2: Proportion of variation explained as related to
a model’s alignment to human expert ratings.

lesson-level variation (pr,) with reduced local con-
text dependency. This finding challenges prevail-
ing single-turn annotation paradigms in LLM eval-
uation, suggesting that as models improve, they
capture broader pedagogical patterns rather than
utterance-specific features. Consequently, evalua-
tion frameworks must incorporate extended conver-
sational contexts and hierarchical sampling strate-
gies to accurately assess model performance in
educational applications.

We find that the variation in scores for models
that are more aligned with human ratings, tends to
be less sensitive to smaller changes in time. For the
CLASS rubric in particular, more human-aligned
models maintain more score stability across an en-
tire lesson, suggesting that the scores are more
representative of persistent differences in lessons.

5.3 External Validity

In order to assess for overfitting to this particular
subset of human raters, we measured the align-
ment of the chapter-level multi-task scores against
the value-added to learning for the students in the
class. To date, there is no study of which we are
aware that connect LLM measures of teaching to
the actual value-added in student learning external
validity.

We find that for is increasing alignment between
VAM and classroom ratings as models mature and
become more aligned with humans.

We demonstrate that while individual task per-
formance generally improves with training, the cor-
relation between model predictions and student
achievement outcomes follows a non-monotonic
trajectory. This phenomenon reveals important ten-
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Figure 3: T-canonical correlation between classroom
observation ratings and value-added measures as a func-
tion of model alignment to human expert ratings.

sions in multitask learning: as models become
more specialized at distinguishing between spe-
cific instructional skills, their ability to capture the
general teaching effectiveness that correlates with
student learning gains may paradoxically diminish.

To assess whether our models exhibit over-
fitting to this particular subset of human raters,
we examined the relationship between chapter-
level multitask scores and value-added measures
(VAM) of student learning outcomes. We em-
ployed 7-canonical correlation analysis to quantify
the strength of association between these two sets
of variables while accounting for their multivariate
nature.

This analysis addresses a critical gap in the lit-
erature: to our knowledge, no prior study has in-
vestigated the connection between LLM-derived
measures of teaching quality and externally vali-
dated VAMs. Such validation is essential for estab-
lishing the practical utility of automated classroom
assessment tools (Figure 3).

While the 7-canonical correlation between
model predictions and student achievement out-
comes generally improves with model sophistica-
tion, individual item performance can follow an
inverted trajectory performance (Figure 9. This
phenomenon illuminates an important tension in-
herent in multitask learning for educational assess-
ment. As models become increasingly special-
ized at distinguishing between specific instructional
skills that human raters prioritize, their capacity to

capture the broader dimensions of teaching effec-
tiveness that correlate with actual student learning
gains may paradoxically diminish. This suggests
that perfect alignment with human expert ratings
may not constitute the optimal objective for de-
veloping classroom observation tools intended to
predict student outcomes.

6 Conclusion

Rating classroom teaching quality remains a per-
sistent challenge, with both human evaluators and
large language models (LLMs) struggling to ef-
fectively utilize authentic classroom observation
instruments. While general-purpose GPT models
have shown limited promise for this task, we de-
veloped custom LLMs based on sentence embed-
dings to overcome the interpretability and scala-
bility limitations of traditional subword tokeniza-
tion approaches when processing lengthy class-
room transcripts. We systematically evaluated five
pretrained sentence embedding models using iden-
tical training regimes designed to maximize effi-
ciency and minimize overfitting given the scarcity
of authentic classroom data. We assessed their abil-
ity to capture pedagogically relevant information
using established observation frameworks. Our
results demonstrate that three embedding models
achieved human-level performance, with correla-
tions exceeding 0.65 for CLASS and surpassing
human averages for MQI. More mature models
increasingly attribute variation to differences at
lesson-level rather than utterance-specific features.
This finding challenges prevailing single-turn eval-
uation paradigms in LLM assessment and devel-
opment, suggesting that improved models capture
broader pedagogical patterns in long-context class-
room dynamics. Validity analysis using teacher
value-added measures revealed that while mod-
els achieving better human alignment also showed
stronger alignment with learning outcomes in ag-
gregate, this relationship did not hold at the item
level. These results indicate that although models
learn pedagogically meaningful features, evidence
for generalization remains limited, highlighting im-
portant directions for future development of auto-
mated teaching quality assessment systems.

Limitations

The findings of this study should be considered
in light of several limitations related to the data,
models, and readiness for practical application. We
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position this work as a proof of concept, and the
following factors must be addressed before these
methods can be considered for real-world imple-
mentation.

Scope of Data and Generalizability The pri-
mary limitation of this study is the specificity of
the dataset, which consists of transcripts from
fourth and fifth-grade mathematics classrooms in
the United States. This narrow scope means our
models lack proven generalizability to other grade
levels, subject areas (e.g., literacy, science), or in-
ternational school systems. While the underlying
methods may hold broader potential, our specific
findings are bound to the context of U.S. elemen-
tary mathematics education. Expanding the ap-
plicability of these models is contingent upon the
availability of more varied public data.

Task and Model Specificity Our approach is lim-
ited by both the evaluation task and the model ar-
chitecture. We focused on a subset of rating items
from the MQI rubric, which may not fully represent
the complexity of the universal task of instructional
rating. Additionally, the inherent imperfections
of observational rubrics, even for human experts,
are a constraint on the ground truth data. Further-
more, our encoder models were custom-built for
this task. While this specialized design allows a
single model to score 25 distinct measures, it is not
designed to generalize to new domains or contexts
without substantial changes to its architecture or
the introduction of new training data.

Considerations for Practical Application and De-
ployment Despite achieving high performance
on several metrics, the models in their current state
are not ready for high-stakes deployment. Substan-
tial research and validation are necessary to ensure
their reliability and to understand potential failure
modes. Even when used with a human-in-the-loop,
more work is needed to align the models’ capabil-
ities with the potential assumptions of end-users.
Crucially, this study should not be interpreted as
an endorsement for using general-purpose "GPT-
style" large language models for similar evalua-
tive tasks. The challenges inherent in this domain
require specialized, carefully validated solutions
rather than the application of general-purpose tech-
nologies.
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Figure 4: Human Expert Score Distributions. These are the score distributions from human experts. The distinct
rating patterns highlight the underlying qualitative differences in the constructs being rated. Previous studies have
focused on a limited range of items (bolded, (Wang and Demszky, 2023))
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Figure 5: Held-out Test Set Distributions. These are comparative score distributions from human experts for the
items in the held-out test set and the remaining sample. No differences were statistically significant.
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Figure 6: Chapter-level by Item-level Correlation with human experts across training epochs
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(1INCTETID) + (1|OBSID) + (1|OBS_CHAPS) + (1|OBS_CHAP) + (1|OBS_CHAP_idx)
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Figure 9: Kendall tau correlations on the stacked VAM outcomes disaggregated at the item level as a function of
training epoch. The mean and interquartile range of all human raters evaluated in the same manner are represented
by the gray line and shaded region in the figure. Weights are used to account for number of observations per unit.
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Lesson Cannonical Correlation (tau) with Student Achievement Value-added
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Figure 10: Lesson-level canonical correlations as a function of correlation with human ratings.
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Figure 11: Chapter-level canonical correlations using methods from Yoon et al. as a function of correlation with
human ratings.

040

030

Lesson Cannonical Correlation (tau) with Student Achievement Value-added

L A o A °
A

03 04 05
Mean Lesson Rating Correlation (rho) with Average Human Rating

Base Model
L # GTE (Adamax) ROBERTa 4 SimCSE (Unsupervised)
4 GTE (AdamW) £} ES Multilingual & SimCSE (Supervised)

Figure 12: Lesson-level canonical correlations using methods from Yoon et al. as a function of correlation with
human ratings.
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Abbreviation Item Item Description

MQI Instrument

ETCA Enacted Task Cognitive Activation Task cognitive demand, such as drawing connections among differ-
ent representations, concepts, or solution methods; identifying and
explaining patterns.

EXPL Teacher Explanations Teacher explanations that give meaning to ideas, procedures, steps, or
solution methods.

LANGIMP+ Imprecision in Language or Nota- Imprecision in language or notation, with regard to mathematical

tion symbols and technical or general mathematical language.

LCPY Lack of Clarity in Presentation of Lack of clarity in teachers’ launching of tasks or presentation of the

Mathematical Content content.

LINK Linking and Connections Linking and connections of mathematical representations, ideas, and
procedures.

MAIJERRY} Major Mathematical Errors Major mathematical errors, such as solving problems incorrectly,
defining terms incorrectly, forgetting a key condition in a definition,
equating two non-identical mathematical terms.

MGEN Developing Mathematical Gener- Developing generalizations based on multiple examples.

alizations

MLANG Mathematical Language Mathematical language is dense and precise and is used fluently and
consistently.

MMETH Multiple Procedures or Solution Multiple procedures or solution methods for a single problem.

Methods
REMED Remediation of Student Errors and Remediation of student errors and difficulties addressed in a substan-
Difficulties tive manner.
SMQR Student Mathematical Questioning Student mathematical questioning and reasoning, such as posing
and Reasoning mathematically motivated questions, offering mathematical claims or
counterclaims.

STEXPL Students Provide Explanations ~ Student explanations that give meaning to ideas, procedures, steps, or
solution methods.

USEPROD Responding to Student Mathemati- Responding to student mathematical productions in instruction, such

cal Productions as appropriately identifying mathematical insight in specific student
questions, comments, or work; building instruction on student ideas
or methods.

CLASS Instrument

CLPC Classroom Positive Climate

CLNCY Classroom Negative Climate

CLTS Teacher Sensitivity

CLRSP Regard for Student Perspective

CLBM Behavior Management

CLPRDT Productivity

CLILF Instructional Learning Formats

CLCU Content Understanding

CLAPS Applied Problem Solving

CLQF Quality of Feedback

CLINSTD Instructional Dialogue

CLSTENG Student Engagement

Table 1: CLASS and MQI item descriptions and corresponding abbreviations. fdenotes items that are reverse coded
due to being negatively worded with respect to the construct of teacher ability. Bolded items are those evaluated by
the GPT family of raters and reported by Wang and Demszky. Each member of the Human and Encoder families of
raters evaluated all 25 items.
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